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Abstract

Traditional Information Retrieval (IR) systems are de-
signed to provide uniform access to centralized corpora
by large numbers of people. The Haystack project em-
phasizes the relationship between a particular individ-
ual and his corpus. An individual’s own haystack priv-
iliges information with which that user interacts, gath-
ers data about those interactions, and uses this meta-
data to further personalize the retrieval process. This
paper describes the prototype Haystack system.

1 Introduction

Current large-scale IR systems are in many ways very
similar to libraries: they manage massive corpora for
anonymous individuals using a fixed organizational sch-
ema. Taxonomies (like Yahoo) emulate the Dewey deci-
mal system. Search engines (like Alta Vista) mimic the
card catalog. But in a library, a user cannot ask for
“the fat book about computers I skimmed last month,”
and current IR systems do not support queries for “the
email about reinforcement learning that I forwarded to
Terry last week.” A search for “apples” will yield the
same results to a computer shopper or a farmer. A user
who “throws out” certain search results will find them
coming back again the next time he performs the same
search.

Libraries are huge, filled with masses of data irrele-
vant to any query. They are impersonal, presenting ev-
ery user with the same information regardless of their
background and interests. And a previous successful
search facilitates future searches only by training the

user; the library itself does not adapt to the needs of
individual patrons. In a traditional library, these prob-
lems are ameliorated by professional reference librari-
ans. In automated IR systems, no such resource cur-
rently exists.

But even in the paper world, libraries are typically
the last place we turn in seeking information. When
a person looks for information, he will often start with
his own bookshelf. This “personal repository” contains
a collection of information, built up over time, that re-
flects the needs and knowledge of its owner. This makes
it different, in crucial ways, from the library. For ex-
ample, all the content was actively placed there by the
user, who is familiar with it and believes it to be use-
ful. In the user’s area of expertise, it is often more up to
date than the library: its owner, who is actively seeking
information in his area of interest, often finds new infor-
mation before the library gets around to it. Overall, a
person’s bookshelf contains the bulk of the information
that he considers most valuable.

An individual’s bookshelf is also organized in an
idiosyncratic fashion. While library materials are ar-
ranged according to a standardized classification sche-
me, individuals have been known to arrange their books
by topic, chronology, usage pattern, or even size and
color. Even users who make no active attempt to orga-
nize their books find them structured in some kind of
most-recently-used hierarchy. Individuals exploit their
idiosyncratic organization when searching for informa-
tion: they may look for a blue book, or a book on
the bottom shelf, or a book next to another book. At
a library, users are limited to searching the standard
classification.!

!Even libraries are not immune to this wish to personalize informa-
tion outside the traditional schema. Recently, the New York Public
Library announced that it would be disposing of its card catalogue,
as it had been superseded by more modern search tools. This was
reported in the New York Times and was newsworthy because many
people objected to the elimination of this old-fashioned search tool.
It turned out that over the years, a great deal of information had
been penciled on to the cards in the catalogue by its users, to the



1.1 A Digital Bookshelf

The Haystack project aims to make a digital IR system
that is less like a library and more like a personal book-
shelf. Fundamentally, this means building a system that
adapts to its user, instead of forcing its user to adapt
to the limitations of the system. A haystack provides
automated data gathering (through active observation
of user activity), customized information collection, and
adaptation to individual query needs.

A critical step in our design is information maxi-
mization: gathering, representing, exposing, and using
all the information about a corpus, its user, and their
relationship that might help information seeking. Our
early research on the Haystack project has focussed pri-
marily on the gathering and representation of such in-
formation, as this must precede any effect use of it.

In Haystack, information maximization is achieved
in three steps. First, all information—including meta-
information—is stored using an extremely general data
model. This means that any information users enco-
unter, as well as any information the system observes,
can be stored, indexed, and retrieved uniformly. Sec-
ond, Haystack gathers as much information as possible
about its user and corpus—by analyzing the corpus off-
line, by observing its use, and by encouraging direct
human input. Finally, Haystack modifies its data and
its retrieval process based on user interactions, adapt-
ing to the behavior of the user and the properties of the
collected data.

Haystack is currently implemented as a refined pro-
totype in Java. This paper describes the general fea-
tures of this prototype. The details of Haystack’s imple-
mentation are described in earlier publications [ADA9S,
ASD98]. Although it will not be discussed in this pa-
per, an advanced graphical user interface has recently
been added to Haystack and is described in [LOW99].

1.2 Haystack in Action

As an example of some of the elements of the haystack
system, consider a user who recalls at one time seeing a
document relevant to a latent semantic indexing prob-
lem he is trying to solve. The user types in “LSI” as
a query to his haystack.? LSI does not actually appear
in the document in question, but his haystack notices
that a previous query he made about principal compo-
nent analysis (and which the haystack dutifully stored
away) contains numerous documents about LSI. So the

benefit of subsequent users. The paper catalogue was a useful tool
but turned out to be missing valuable information. People modified
it over time to make it even more useful.

2The user might really have typed “latent semantic indexing”,
or the user might have typed (and intended) the acronym LSI. A
third possibility makes use of Haystack’s query tracking feature: the
user might have typed LSI, then refined it to “latent semantic index-
ing.” In future queries, his haystack would short-cut this refinement,
searching for latent semantic indexing when the user asked for LSI.

haystack shows that query and its results to the user.
The user, inspecting the result set for that query, dis-
covers a postscript version of the paper he was looking
for and asks his haystack to display that paper. In ad-
dition, a link from that postscript paper shows that it
arrived in an email message from a colleague; a further
link from that email message points to a followup mes-
sage from a second colleague, critiquing some elements
of the paper. A separate link points to a copy of the pa-
per’s abstract located in a seminar announcement that
identifies a “host” who might have other useful informa-
tion. The user can follow links to find out “what papers
have been published by this host?” on the assumption
that they may well be relevant to the topic in which
they are interested.

This example demonstrates several ways in which
Haystack exploits its single-user orientation. Haystack
can (though it need not) limit its search to material the
user has encountered before. A search which would be
unreasonably broad on the web can still make sense on
this narrower corpus. Haystack also remembers past
queries that the user has made; given a typical user’s
tendency to be interested more than once in the same
information, this provides a leaping off point for future
queries. Haystack scans its corpus to make connections
between documents with similar content. In addition,
by tracking the usage history of objects, Haystack is
able to draw connections that might not be visible under
a word-based matching rule. Finally, by creating and
exploiting metadata links, the haystack data model lets
users follow associations to discover additional related
material.

1.3 Paper Roadmap

The reminder of this paper begins with a discussion of
previous work (Section 2). In answer to our need for
a versatile data representation we introduce the graph-
based Haystack data model (Section 3). This is followed
by a high level disucussion of the Haystack prototype’s
architecture (Section 4). To address the need for data
gathering and maximization we introduce various ap-
proaches in Section 5. We conclude with a brief discus-
sion on evaluation (in Section 6, some observations and
future work in Section 7.

2 Prior Work

Haystack grows out of two long-established research ar-
eas, information retrieval and information filtering.

IR focuses on the question of guiding users to infor-
mation in a large, fixed corpus. Research is embodied in
such systems as SMART [SAB94] and large web search
engines (Alta Vista, Excite, Lycos). The typical as-
sumption in these projects is that the corpus is large



and non-personalized. The general metric for quality in
these systems is the precision-recall curve which is based
on some testing data. Relevance is generally judged in
this testing approach by human “experts.” Unfortu-
nately, this causes most systems to be trained to the
opinions of relevance based on experts. Individual users
with differeing opinions and interests may find their ex-
perience of the system to be quite different. These mea-
sures also ignore the prior history of a user’s interaction
with the corpus and its effect on retrieval.

A number of commercial vendors have recently be-
gun to create software packages for indexing of small
desktop based collections. Largely, these systems in-
clude a text indexing mechanism that occasionally in-
cludes the ability to query on other document proper-
ties (creation/modification dates, file owner, etc.). Two
particularly robust examples of this type of system are
Compaq’s AltaVista Disovery tool [AV98] and Apple’s
Sherlock [AP98]. However, even these tools do not at-
tempt to adapt to a user.

Information filtering attempts to deal with individ-
ual users’ needs by performing online decisions of rel-
evance of a particular piece of information to a user.
Users then “train” the system by pointing out several
interesting or relevant documents; the system then at-
tempts to decide, based on this information, whether
a given new piece of information will be interesting.
Balabanovic et al. [BSY97] constructed a system that
learns user preferences regarding web pages. The model
is trained by presenting users with candidate web pages
and asking them which are interesting. CMU’s Web-
Watcher [JOA95] is another example of an agent that
learns from user feedback. Similarily, Letizia [LIE95]
provides surfing suggestions by pre-processing links fur-
ther down the hypertext path and measuring them aga-
inst user preferences.

These tools share several features of collaborative fil-
tering that we aim to avoid in Haystack. They all work
with a general model of “goodness” that is independent
of any particular query—they try to get a broad idea
of the user’s likes and dislikes, without tackling specific
information needs. Also, these tools require the user to
explicitly rate candidate objects for quality to provide
useful input to the system.

Haystack is an attempt to draw together some of the
threads that have been explored separately in informa-
tion retrieval and learning based information filtering.
Integrating the information retrieval system into each
individual’s desktop instead of restricting it to large,
communal corpora gives us the opportunity to person-
alize the information retrieval process, adapting it to
individual attitudes about what is interesting and how
it is described. But we focus on search, where the user’s
specific information need, and not just a general notion
of goodness, drivies the search for results.

This blend of search and filtering has also been ex-
plored to some extent. Academic research on personal
information tools stems from the early days of Hyper-
text research including Bush’s Memex [BU45] and En-
gelbart’s AUGMENT [ENG62]. The Lifestreams proj-
ect from Yale [FRE95] is another example of personal
information space management. Lifestreams, however
is predominatly based on the storage of documents in
a temporal context. Haystack allows for classification
and retrieval on other document features. The Remem-
brance Agent [RHO96] indexes a user’s e-mail and other
local files. When the user works in the Emacs editor,
the agent provides pure content based retrieval on re-
lated material.

3 A General Data Model

Our goals for haystack motivated the choice of a very
general data model that can represent arbitrary pieces
of data and metadata and the links between them. We
choose to record metadata because it can provide useful
information to a user, beyond the raw document object.
This information, displayed to the user, may help them
make a better judgement about the relevance of objects.
We also allow the user to extend this metadata as they
wish, for example to let them manually annotate objects
with information they find useful. We cannot predict
what information a given user may find useful, or in
what ways a given user may choose to extend the model,
so we want a model that can grow easily.
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Figure 1: The Haystack Data Model



Besides being general enough to store any data types
or relationships between them, our data model creates a
natural linkage of “related information” —for example,
a document can be linked to its author, and through its
author to other documents written by the same person.
These links provide support for “associative searching”
by a user, which can home in on information from other,
partially related information. They also provide indica-
tions of similarity that can be used in our indexing tools
to modify retrieval performance.

The Haystack data model is represented by a graph
structure exemplified by Figure 1. This graph is esen-
tially a semantic network that lets us model associa-
tions. Nodes within the graph, which we call straws,
represent units of information. Haystack’s data types
are further extended through an inheritance hierarchy.
The base type is a straw, its subclasses are needles,
bales and ties.

For example, the document’s type (4) occupies one
straw and the text of the document occupies another
(3). These two particular pieces of information are ex-
amples of the simplest kind of node — containing a single
primitive piece of information — in our system.? We call
these primitive pieces of information needles, since it is
presumed that they will be the most frequent desired
results of searches. Specific needle types store integers,
text, binary data, and other formats.

Other nodes do not contain any data themselves but
rather serve as placeholders to collect a group of related
straw objects. For example, a directory contains a num-
ber of files (or other directories). We call collection-type
straws bales. A Haystack document (1) is a particularly
important bale type representing a document archived
within the Haystack. To the Haystack document we at-
tach various other needles (as direct attributes of the
document) and bales (as other collections relevant to
the document in some way). Each bale has an associ-
ated set of straw objects representing its content. The
relationships between a bale and its member straw are
one particular type of the many edges in our data graph.

We call the edges of the graph ties. Examples of ties
are nodes (5) and (6) in Figure 1. A tie allows us to rep-
resent arbitrary relationships between two other straw
objects. This provides the basic facility for annotation
and metadata. However, ties are themselves straws,
which allows for recursive annotation of the metadata.
It is therefore possible to represent more complex re-
lationships. For example, the type tie (5) above was
created by a specific client (7, a type guesser).

We can also return to our observation that the Hayst-
ack data model represents metadata about archived do-

3Czatlling the document text ”primitive” does not preclude analyz-
ing it further. The document text is ”primitive” only qua document
text. As we describe below, a document text straw may also be re-
lated to other straw objects denoting other aspects or representations
of the document.

cuments. To represent metadata, one usually requires
the ability to express attribute/value pairs. Values are
held within the needles described above. The associated
attribute is represented by the label of the tie connecting
the needle to another document. For example, we know
that a given text needle (4) contains the type of the doc-
ument because the label of the tie connecting it to the
document is “type” (5). Labels actually form a type
system, and Haystack allows arbitrary straw subclass-
ing. For example, the general “location” is subtyped in
the example document as “location.URL” ().

Haystack data model nodes can also be used to in-
terface Haystack to external “services.” An example is
Kramer’s work in the MIT Intelligent Room [KR97]. In
this context agents that controlled external devices (a
VCR, for example) were “indexed” in Haystack.

An important, if slightly mundane, feature of the
data model is the ability to dynamically load and unload
individual nodes from memory. Straw types correspond
directly to Java objects. While in memory connections
between straws are standard direct memory pointers.
However, because of the potential complexity and size of
Haystack data graphs it is not possible to hold a user’s
complete Haystack in memory. The implementation of
straw allows for the connection between between nodes
to be severed and rebuilt quickly by replacement of the
memory pointers with unique straw identifiers. This
allows us to store and load subgraphs to and from disk.
The data model elements are managed by the persistent
object service described previously.

4 Architecture

The Haystack system consists of a three-tiered architec-
ture. At base are the data storage systems — databases
and information retrieval engines — on whose behavior
Haystack relies. Above this is the core Haystack system,
which includes both a data model implementation and
other operating-system-like services. Finally, Haystack
provides a number of client level services that augment
and use the data stored in a haystack. The complete
Haystack architecture is depicted in Figure 2.

4.1 Database Layer

Haystack is not a project about information retrieval
per se. We remain largely agnostic regarding the par-
ticular search tool(s) used. Instead, we are interested in
augmenting the power of these tools by providing per-
sonalization of the information that they record and re-
trieve. As a result, Haystack delegates the actual tasks
of storage and search to off-the-shelf information re-
trieval and database tools.

In order to integrate a particular information re-
trieval engine or database into Haystack, we wrap it
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Figure 2: The Haystack Architecture

with a relatively simple adapter. This includes routines
that turn Haystack data objects into a form suitable for
storage in the off-the-shelf component as well as meth-
ods for retrieving objects so stored. We have success-
fully integrated a number of different traditional infor-
mation retrieval systems into Haystack. In addition, we
have worked with a semi-structured database [MCH97]
and a persistent object store [AP98].

4.2 Haystack Root Server

The core of the Haystack system is the root server. This
component provides a persistent, indexable, searchable,
transaction-safe implementation of the uniform data mo-
del described in the previous section. In addition, the
Haystack root server provides a variety of other services
such as a name service, a thread pool, and event queue-
ing. In essence, the Haystack root server is a small-scale
operating system providing the necessary infrastructure
for the client services which run above it.

The server layer contains Haystack components that
serve utility purposes, and also acts as the “environ-
ment” within which the various data-driven clients op-
erate. This tier consists of various services that all run
within the context of one Haystack root server (basi-
cally, a Java Virtual Machine). The root server in-
cludes a name service by which other services bootstrap
themselves. A persistent storage services, built around
a DBM, allows for dynamic loading and unloading of
Haystack data model structures. Other services, allow
for system configuration, transaction support, and in-
terfaces to the indexing and query functionality of the
various systems that reside in the database layer.

Implementation details of the various utility services
residing in the server layer as well as mechanisms by
which external services communicate with the root ser-
ver are elaborated on in [ADA98] and [ASD98].

4.3 Client Services

Client services augment and use the data stored in the
haystack. All client services rely on the uniform data
model provided by the root server. In addition, client
services make us of other aspects of the infrastructure
level including resource management, interprocess com-
munication, and networking.

There are three major classes of client services. First,
the user can interact with his haystack directly. These
interactions are supported by a simple command-line
interface or by a more complex custom graphical user
interface. Haystack’s direct user interfaces allow a hu-
man user to add new information to his haystack, to
annotate existing information, to issue queries, and to
browse the results of these queries as well as other infor-
mation contained within his haystack. The uniformity
of the data model means that any information within
the haystack can be the target of annotation, query, or
browsing activity.

The second class of Haystack clients is a set of proxy
services that Haystack provides for other desktop appli-
cations. As before, the user also interacts with his elec-
tronic environment, including the World Wide Web, e-
mail systems, and other information sources. Haystack
slips invisible observers (proxies) between the user and
these external information sources. Without disturb-
ing the user, these proxy services allow his haystack to



record what the user does and sees, remembering both
relevant information and the (metadata) context within
which it was encountered.

Finally, the client level of Haystack includes a num-
ber of automatic data-augmenting clients. These ser-
vices act to modify the data within a haystack in a wide
variety of ways. For example, a fetching client recov-
ers the external document corresponding to a URL in a
haystack. A textifier client produces a plain text version
of (e.g.) a postscript document it finds in the haystack.
A similar text finder service compares documents within
the haystack, adding a link between two documents
when it finds significant overlap. Even queries are han-
dled by such clients: a query client polls the underlying
information storage systems to address an information
request placed into the haystack.

4.4 One Person, One Machine

We have chosen to implement haystack as a tool that
runs on an individual’s own machine, rather than some-
thing serving out of a centralized repository like the in-
ternet search engines. Although such systems are sub-
stantially more powerful than desktop computers, our
approach lets each user have more cycles dedicated to
them than they could get from any centralized tool.
We can therefore apply more sophisticated search tech-
niques without worrying about resource limitations. Lo-
cation on the user’s machine maximizes the amount of
information that can be gathered from a user. It also
gives at least the psychological illusion of more privacy,
so that a user will be willing to commit more personal
preference information to the system. Of course, this
approach is only practical because an individual’s cor-
pus of interest is significantly smaller than the entire
web.

4.5 Indexing

Although a full description of the indexing mechanisms
for Haystack are beyond the scope of this paper, we
provide a brief description. Text extracted from the
data model is deposited in an information retrieval sys-
tem. Haystack attempts to be neutral in respect to
the type of information system in the bottom layer; we
have built interfaces to two text retrieval engines, MG
and Isearch, and are working on others. This approach
will allow us to later integrate such nontraditional TR
systems as Scatter/Gather [CKPT92]. Additionally, an
initial attempt has been made to index the data model
in a database [ADA9S].

Indexing is done incrementally. The Haystack sys-
tem monitors changes in the data model followed by a
“calm,” when no changes are made. When the data has
reached this stable state Haystack executes a breadth
first search through the graph structure starting at the

“Document” anchor node. Each node generates tex-
tual information (if possible) and the text is collected
and indexed as one unit in the information retrieval.
This method allows us to associate pieces of information
that may not have necessarily been obvious from just
the text of the document. For example, it may not be
obvious from reading a paper that Bob wrote it. How-
ever, because Bob was the creator of the file on the hard
drive, and because Haystack has extracted this informa-
tion and connected it to the document, Bob’s author-
ship will be noted in the indexed text of the document.
This approach is consistent with Spreading Activation
Models (SAM) which describe memory functions in as-
sociative networks.

4.6 Search

The ultimate goal of Haystack is to provide high-quality
retrieval. User queries abstractly consist of some infor-
mation need (which may be implicit or hidden) and a
number of hints that the user will leverage to cause the
system to return something that truly satisfies that in-
formation need. For example, a user may be looking
for a book on probability and may remember that the
book was red. The fact that the book is red has noth-
ing to do with the real information need, but if the user
knows that this is a unique characteristic of the book
(or can’t remember other characteristics) this is how he
would phrase his query. Users, in dealing with informa-
tion they have seen or have created, will have a large
and varied set of hints.

As indicated previously, Haystack searching makes
use of various search engines. Although this is still work
in progress, the Haystack data model is processed in
various ways and converted into the “native” format
of various search engines. A user is then able to use
various modes of search including text, database, and
hyperlinking.

5 Harvesting Data for Haystack

There are three distinct sources of data for Haystack:

Data driven clients that digest data already in Hay-
stack to produce more data;

Observers that watch what the user is doing and place
the resulting information in the Haystack;

Active human annotation carried out by the user to
improve his data organization.

In the following sections, we describe these three
mechanisms in detail.



5.1 Data driven clients

One primary source of new information in Haystack is
the digestion of information that already exists in the
repository. This processing is carried out by indepen-
dent but cooperating data driven clients. In design-
ing Haystack we realized that it would be impossible to
forsee (let alone implement) all the clients users could
ever use. Haystack therefore allows for the dynamic in-
sertion of new clients in a scheme inspired by CORBA.
Clients are implemented in Java and conform to a cer-
tain interface. Once loaded, clients register themselves
with the name service held within the root server.

The data driven clients fall into several main cate-
gories:

o Fetch clients retrieve data from various other sou-
rces (from a URL, from an RMAIL file, etc.).

e Type inference clients decide the type of a docu-
ment once it is retrieved (a latex file, a postscript
document, an HTML page, etc.).

e FExtractor clients attempt to extract textual infor-
mation from the retrieved documents. For exam-
ple, a postscript extractor knows how to convert
postscript files into text.

e Field finder clients extract various pieces of meta-
data. For example, the to, from, and subject lines
in an email message.

Haystack’s data-driven clients are triggered by events
occurring in the user’s Haystack data. In addition to
registering with the name service, clients register (with
a special dispatcher service) interest in various changes
to the data structure. These changes include the cre-
ation, deletion, and modification of straw objects. In-
terest is currently expressed in terms of a template
which is submitted to a dispatcher service. The tem-
plate corresponds to a one level tree representing essen-
tially a regular expression.

For example, a service can register interest in the
addition of an “author” node to a “document” node
which already has a “date” node attached to it. When-
ever a new node appears in the Haystack data model,
the dispatcher quickly determines the other nodes lo-
cally effected by the change. The dispatcher then passes
the regular expression templates over the effected sub-
graph. If there is a match for both event type and
structure, the interested client is notified (and executes
in its own thread). Because we limit template structure,
and our dispatcher is tuned, it is possible for sub-graph
matching to scale. Additionally, we internally manage
a queue for events and a thread pool to prevent satura-
tion of the system when a large number of new objects
are added to Haystack.

5.1.1 Data Driven Clients in Action

An example of a number of data driven clients archiving
a document in Haystack is illustrated in Figure 3. In (a)
a user has added a new document to Haystack. This is
done by submitting the URL through one of Haystack
interfaces. The URL is anchored by some default be-
havior to a document node. A fetch service which has
previously expressed interest in such a formation is no-
tified and passed a reference to the effected subgraph.
The service retrieves the bits for the document from
the web, and in (b) adds a new node to the graph that
contains these bits.

Fetch
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Figure 3: Data driven clients in action

Subsequently, a “type guesser” service is notified
that there is a document with some attached bits. The
type guess service in Haystack has been implemented
with various heuristics and is able to recognize many
file types. In (c¢) the type guess service labels the docu-
ment as being of type postscript. Finally, a text extrac-
tor service (in this case one that knows how to convert
postscript to text) is notified that a relevant structure
has become available. In (d) this service has created a
new node containing the text of the document. After
some stable state has been reached (i.e. no more events
are triggered) the text and graph structure are indexed
for queries by the user.

5.2 Observers

As discussed before, we would like to maximize the
amount of information we gather about individual Hay-
stack users. Although ideally we would like to see users
manually building up annotations of the data structure,
the reality is that most will not. Haystack was designed



with this reality in mind. By observing the user it is
possible for Haystack to make annotations automati-
cally so that organization and retrieval can be optimized
over time.

Proxy services act as transparent intermediaries be-
tween the user and external information sources. As the
user acquires new pieces of information the proxies sub-
mit the information and other observations about the
user’s state to Haystack’s server layer. WWW and e-
mail proxies are currently included in Haystack. Hayst-
ack also provides a crawler that traverses a user’s file
space at regular intervals looking for changes. To un-
derstand the type of information gathered from obser-
vation of the user we describe the web proxy in more
detail.

A user configures his or her web browser to utilize
the Haystack web proxy. The proxy acts as an interme-
diary between the browser and other servers. As a user
browses the web, the documents he sees are pushed into
Haystack. Just as we would automatically make anno-
tations to the document if it was added explicitly by
the user, we do the same in this observation mode. Ad-
ditionally, we include information gathered from obser-
vations of the interaction of the user with the external
web servers. For example, as the user clicks from page
to page, Haystack draws edges from the archived repre-
sentation of these pages. It is later possible, on retrieval,
for the user to retrace his steps. Another example is our
ability to annotate a document with a “visited” time.
A wuser can then query for “all web pages that I looked
at between 1:00 PM and 1:30 PM today.” Although
it is impossible for us to predict whether a user will
actually make a query on this particular feature, we re-
call that certain users sort and search by color, size,
and other metrics. By gathering as much information
as possible we insure that an individual user is able to
utilize whatever features that he finds useful for recall
and retrieval.

5.2.1 Query Observers

IR systems are designed to answer questions in a pre-
dictable way. Generally, one IR system will interact
with many users. Both in the interest of fairness and to
make implementation easier, the system never adapts
to individual users. For example, a query for the word
“jaguar” will always return the same set of documents
whether the user is a car buff, a computer gamer, or a
zoologist. This is important for not confusing the many
users of single search service nor biasing the system un-
fairly. However, because we are dealing with only a
single user, in Haystack we have opted for a slightly
different approach. As long as Haystack adapts in a
consistent fashion with a user’s expectations, we be-
lieve it is valuable to mold the data model to the user
based on query interactions.

Just as Haystack observes the user’s interaction with
the “outside world,” services within also observe the
user’s interaction with Haystack itself. Specifically, we
are interested in representing the queries and paths that
a user may take in browsing his Haystack collection. To
achieve this we introduce the concept of query straws
and query paths.

When queries are made into a Haystack interface two
things happen. The first is that the query is routed to
the appropriate information system and the results are
presented to the user. The second is that a new node
appears in the Haystack data graph representing that
query. We call this node a query straw. This straw
is actually of the bale type described above. Haystack
attaches the nodes corresponding to the matched doc-
uments to the query straw. The query straw also con-
tains the actual text of the issued query, the relative
rank of the returned documents, and other possibly
useful pieces of information about the query. Because
the queries are part of the Haystack graph, users can
also annotate, add to, and disconnect (irrelevant) doc-
uments from, the query straw. If a user does not get
completely satisfactory answers from the information
system, he can make adjustments to the result set. As
the result set is archived within the data graph, subse-
quent queries of the same form will generate a pointer
to the user-adjusted result set. By providing this facil-
ity in Haystack, we allow users to modify the system’s
idea of relevance to match their own. Haystack can also
reinforce the weighting of documents frequently visited
in response to a query. This approach takes inspiration
from IR relevance feedback techniques [FBY92, Chap-
ter 11], but differs in purpose and execution.

In a perfect world the user will get back data he is
interested in instantly. In reality, however, it takes a
user numerous iterations with the system to get at this
information. Haystack observes this behavior and an-
notates the data to reflect the fact that various query
straws are chained together. These chains are called
query paths. The Haystack query interface provides a
method to either start a new query or indicate that the
user is continuing along the same path. We decide that
a user has found what he is looking for when he asks
to see the contents of a document. This is not a per-
fect solution, but it allows us to decide where a query
path ends. Query paths give us two important bene-
fits that help in subsequent retrievals. When searching
for the same or similar documents, a user is presented
with similar query objects. From the query objects a
user can travel the same query paths he has in previ-
ous iterations. This allows users to reduce the number
of steps necessary to find information they previously
found relevant by having access to the full query path
up-front.

Additionally, documents within Haystack are index-



ed when the structure surrounding them changes. When
a document becomes the terminal point for a query
path, the entire text of the query path (as it is local
to the document node in the graph) is indexed with the
text of the HaystackDocument cluster. The index of the
document now contains added terms which change the
relevance of the document with respect to those terms.
For example, if a user makes a query for the word “cat”
and receives no matches, he may change his query to
“feline.” If feline generates results, and those results
are acceptable, Haystack notes this. In re-indexing the
relevant documents the term “cat” is added to the doc-
ument. Subsequent queries for “cat” will generate the
matching documents on the first try. In this fashion,
Haystack learns the vocabulary and weighting of terms
for an individual user.

A detailed evaluation of the improvements to preci-
sion and recall using this technique has yet to be under-
taken, but in the limited use among project members
this approach appears to provide some utility.

5.3 Human Annotation

The third and probably best source of information for
Haystack is active annotation by the user. Unfortu-
nately, active participation by users is also hard to ach-
ieve. Carroll [CAR87] describes this difficulty as the
“Production Paradox,” where users ignore learning st-
eps that require effort but which will produce better
end results.

We have worked to make annotation as easy as pos-
sible, so as to lower the effort required to annotate. We
are hopeful, as well, that users who are working with
their own data will be more motivated to work on orga-
nizing it than those whose annotations in past social fil-
tering systems have mainly provided “benefit” to other
users of the system.

To ease the user’s work in annotation, we provide
multiple interfaces so that the user can choose whichever
is most convenient at the time. Currently these inter-
faces include a custom (personal) web server, a Java
based GUI, a command line tool, and an emacs inter-
face. This variety of access mechanisms will perhaps
encourage the integration of annotation into the user’s
workflow. However, significant user studies will be re-
quired to refine this approach.

6 Evaluation

Haystack is currently in a limited alpha release, but is
approaching a stage in which it can be released to a
public user-base. In anticipation of this we have built
into Haystack an extensive logging facility that will al-
low us to monitor how users interact with the system.
Once the public release occurs, our hope is that we will

be able to construct a broader user-study to evaluate
the utility of Haystack based on these logs.

Because of its personal nature, Haystack is hard to
evaluate in large studies. The system requires seeding
by a user and continued use for adaptation to occur.
Additionally, relevance in the context of personal infor-
mation is highly subjective. Standard methods for judg-
ing IR systems require a standardized corpora where
experts have judged relevance of documents to various
queries. These evaluation methods, which are largely
based on precision/recall curves, are hard to apply to
system such as Haystack.

7 Conclusions and Future Work

Haystack’s goal is to draw together some of the threads
that have been explored separately in information re-
trieval and information filtering. Integrating the in-
formation retrieval system into each individual’s desk-
top instead of restricting it to large, communal corpora
gives us the opportunity to personalize the informa-
tion retrieval process, adapting it to individual atti-
tudes about what is interesting and how it is described.
Two different Haystacks might give completely differ-
ent answers to two different individuals’ queries, and
be right because the two users mean different things.
The fact that the system is explicitly designed to deal
with queries creates an alternative to filtering systems’
model of a “notification” service, instead allowing use-
ful processing of a users specific information need at the
time it becomes apparent.

The elements of the Haystack system described ab-
ove have all been implemented, although the prototype
requires scaling issues to be resolved. The work to date
has focussed on the problems of data representation and
gathering, but we can now turn towards many of the
more interesting problems involved in exploiting the
large amounts of data we have gathered. Among the
tasks we hope to undertake:

o After building up a database of user queries, re-
finements, and reactions to the results, use ma-
chine learning tools to improve retrieval perfor-
mance in future queries. Among the learning pos-
sibilities are learning which documents are “high
quality” and preferred by the user (independent
of the query) and learning what additional terms
a user tends to associate with a given query term
(personalizing and automating query expantion, so
that the user needn’t bother).

e Provide a better interface to “hybrid search” meth-
ods that allow users to mix full text, relational,
and associative queries.

e Discover users’ “interests” (based on what they
own) and use the information to drive a recom-



mender system that looks for interesting material
on the web. Haystack gathers far more data about
a user than typical recommendation systems, and
we hope that this will let it make better recom-
mendations.

If a person’s bookshelf fails him, he still has an al-
ternative to the library. The natural next step is to
ask his colleagues in neighboring offices. Turning to a
colleague offers several advantages over a trip to the
library. Colleagues have their own personalized collec-
tions of information which they can search effectively.
They share interests and vocabulary with the original
questioner, and are thus likely to be able to understand
that person’s information needs and effectively commu-
nicate anything they might know that can help. A per-
son can describe his problem in a language common to
him and his colleague, and his colleague can then use
her own knowledge of her collection to find what the
original searcher wants. Finally, books in colleagues’
personal collections are more “trustworthy” than ran-
dom books selected from a library. Their presence in the
colleague’s collection indicates that someone we trust
considers them valuable.
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