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ABSTRACT 
The Resource Definition Framework (RDF) is designed to support 
agent communication on the Web, but it is also suitable as a 
framework for modeling and storing individual users’  
information. By using RDF in this manner, our Haystack platform 
provides information management capabilities personalized to 
individual users. This flexible semi-structured data model is 
appealing for several reasons. First, RDF supports ontologies 
created by the user and tailored to the user’s needs. At the same 
time, system ontologies can be specified and evolved to support a 
variety of high-level functionalities such as flexible organization 
schemes, semantic querying, and collaboration. In addition, we 
show that RDF can be used to engineer a user interface 
architecture that gives rise to a semantically rich and uniform UI. 
We demonstrate that by aggregating various types of users’  data 
together in a homogeneous representation, we create opportunities 
for agents to make more informed deductions in automating tasks 
for users. Finally, we discuss the implementation of an RDF 
information store and a programming language specifically suited 
for manipulating RDF.  

1. INTRODUCTION 
A key present day challenge for any individual is making 
productive use of the vast amount of information they have and 
the even vaster amount that they can easily obtain through the 
Internet. A significant barrier to such use is the heterogeneity of 
the data itself and of the applications that help users work with 
that data. Data objects with close semantic relationships, such as 
an e-mail about a project, a web page relevant to it, a calendar 
entry of an important project date, and a to-do list about the 
project cannot be dealt with in a uniform way—they look different 
and are manipulated by distinct applications that do not talk with 
each other.   

The problem of data heterogeneity on the web is being tackled by 
the development of RDF, a common language for the description 
of resources and the relationships connecting them [6]. RDF has 
been developed to provide interoperability between applications 
that exchange machine-understandable information on the Web. 
In other words, RDF is well-suited for facilitating Web Services 
in resource discovery, cataloging, content rating, and privacy 
policies. 

While it has mainly been targeted at web automation, we argue 
that RDF has great value as a tool for storing, navigating, and 
retrieving information in an individual user's information corpus. 
The data relevant to a particular activity can be brought together 

and manipulated by user interfaces optimized for that activity 
rather than for a particular data type. Common information 
management tasks, such as searching for information relevant to a 
particular query or flagging items of particular interest to a user, 
can be delegated to agents that need not waste time dealing with 
multiple data formats.  By describing all of the user’s data with 
one unified semi-structured data model, Haystack enables the 
components of the system to concentrate on the semantic 
differences in the data without worrying about syntactic or 
protocol differences occurring between different systems. 
Individual users can extend the data model, adding attributes or 
schemata that represent their preferred means of organizing 
information, making it easier for them to find information the way 
they expect it to be found. 

While these added capabilities are attractive, several problems 
must be solved in order to attain them. Simply storing a user's data 
in RDF is not sufficient; indeed, it is in some sense a step 
backward since it is much more complex than the files and folders 
model with which users currently work. An interface must be 
developed that takes advantage of RDF's rich structure to give its 
user a more informative view of their repository without 
swamping them. We must help people manipulate unstructured, 
semi-structured, and structured data without requiring them to 
become skilled database administrators. If agents are to help 
manipulate this repository, an appropriate environment must be 
designed within which such agents can architected and can 
operate and communicate with each other. In this paper, we 
propose solutions to these problems. 

1.1 Motivation 
The goal of the Haystack project is to develop a tool that allows 
users to easily manage their documents, e-mail messages, 
appointments, tasks, and other information. Haystack is designed 
to address four specific needs of the user.  

First, the user should be allowed maximum flexibility in how he 
or she chooses to describe and organize his or her information. 
The system should allow the user to structure his or her data in the 
most suitable fashion as perceived by the user. 

Second, the system should not create artificial distinctions 
between different types of information that would seem unnatural 
to the user. This point is related to the previous point in that the 
system should not partition a corpus simply because different 
programs are used to manipulate different parts of that corpus. 
Rather, the system should store all of the user’s information in one 



 

homogeneous representation and allow the user to impose 
semantics that partition the data appropriately. 

Third, the system should allow the user to easily manipulate and 
visualize his or her information in ways appropriate to the task at 
hand. The user interface should be aware of the context in which 
arbitrary information is being displayed and should present an 
appropriate amount of detail.  

Fourth, the user should be able to delegate certain information 
processing tasks to agents. Regardless of how powerful a user 
interface we provide, there will still be many repetitive tasks 
facing users, and we feel that users will benefit from automation.  

1.2 Contribution 
By addressing these four needs, Haystack is able to use its RDF-
based semi-structured data model to extend several significant 
benefits to users.  RDF can be readily exploited to add semantics 
to existing information management frameworks and to serve as a 
lingua franca between different corpora. On top of this, we 
provide an ontology that supports capabilities including 
collection-based organization, semantic categorization, 
collaboration and trust management. By ontology we are referring 
to a vocabulary that specifies a set of classes and the properties 
possessed by objects of these classes. A representative screenshot 
of our system in Section 2 helps to illustrate some of these 
capabilities further. 

In Section 3, we argue that representing information in RDF lets 
us develop a semantic user interface for presenting information 
in a uniform, natural fashion. Instead of presenting each data type 
inside a distinct application, our interface allows distinct data 
types to be seamlessly presented together, with appropriate views 
of each type of data being integrated and nested at an extremely 
fine level of detail, and appropriate actions for each data type 
being available whenever data of that type is in view. In a 
convenient self-reference, RDF itself provides a natural way to 
represent these information views, allowing the system to 
incorporate new “view types”  as they are needed. 

In Section 4, we discuss the use of RDF for modeling imperative 
computational processes. We describe an environment within 
which agents can act to automate information management tasks 
for the user. We present a language called Adenine as a natural 
means for manipulating metadata and thus writing programs for 
Haystack. Adenine programs compile into an RDF representation, 
affording them the same ability to be annotated, distributed, and 
customized as other documents and information. This language 
lowers the barrier for writing user interface components and 
agents in our system that must flexibly adapt to the underlying 
data model.  

1.3 History 
The information overload problem has become more and more 
evident in the past decade, driving the need for better information 
management tools. Several research projects have been initiated to 
address this issue. The Haystack project [9] [10] was started in 
1997 to investigate possible solutions to this very problem. It aims 
to create a powerful platform for information management. Since 
its creation, the project has sought a data modeling framework 
suitable for storing and manipulating a heterogeneous corpus of 
metadata in parallel with a user’s documents. With the 
introduction of RDF, a good match was found between the 
versatility and expressiveness of RDF and the primary need of 

Haystack to manage metadata. The project has recently been 
reincarnated to make use of RDF as its primary data model. 

1.4 Related Work 
There have been numerous efforts to augment the user’s data with 
metadata. The Placeless Documents project at Xerox PARC [3] 
developed an architecture for storing documents based on 
properties specified by the user and by the system. Like Haystack, 
Placeless Documents supported arbitrary properties on objects and 
a collection mechanism for aggregating documents. It also 
specified in its schema access control attributes and shared 
properties useful for collaboration. The Placeless Documents 
architecture leveraged existing storage infrastructure (e.g. web 
servers, file systems, databases, IMAP, etc.) through a driver 
layer. Similarly, Haystack takes advantage of the same storage 
infrastructure, using URLs to identify documents. 

While it may seem that Placeless and Haystack are quite alike in 
that they use similar data models, much more significant 
difference appears in the approach to the user interface.  
Placeless’  Presto user interface focused on facilitating 
management of data in general using a predetermined set of 
interfaces. In developing Haystack, we are experimenting with 
ways to incorporate the customization of user interfaces into the 
bigger problem of personalized information management by 
providing a platform upon which user interfaces can be modeled 
and manipulated with the same facility as other metadata. 

There are other systems, many in common use today, that permit 
arbitrary metadata annotations on files. The Windows NT file 
system (NTFS) supports file system-level user-definable 
attributes. WebDAV [2], a distributed HTTP-based content 
management system, also permits attributes on documents. Lotus 
Notes and Microsoft Exchange, two common knowledge 
management server solutions, both support custom attributes on 
objects within their databases. However, the metadata are not 
readily interchangeable among different environments. The 
WebDAV and NTFS metadata formats offer little information on 
how to present such metadata to the user, making it difficult to 
construct user interfaces that improve upon standard key/value 
pair editors. Lotus Notes and Microsoft Exchange store form 
designs in their stores, but these designs are highly coupled to the 
specific schemata of the databases they present and must be 
retrofitted when these schemata are customized. Further, the 
structure of metadata in these systems is highly constrained and 
makes the expression of complex relationships between objects 
difficult. For example, these systems do not have first class 
support for making assertions about predicates, such as the fact 
that a digital signature is not a useful property to display to the 
user in raw form, making it difficult for the user interface and 
agents to analyze data conforming to a foreign ontology 
dynamically. 

The Semantic Web project at the World Wide Web Consortium 
(W3C), like Haystack, is using RDF to address these issues of 
interchangeability [4]. The focus of the Semantic Web effort is to 
proliferate RDF-formatted metadata throughout the Internet in 
much the same fashion that HTML has been proliferated by the 
popularity of web browsers. By building agents that are capable of 
consuming RDF, data from multiple sources can be combined in 
ways that are presently impractical. The simplest examples 
involve resolving scheduling problems between different systems 
running different calendaring servers but both speaking RDF. A 



 

more complex example is one where a potential car buyer can 
make automated comparisons of different cars showcased on 
vendors' web sites because the car data is in RDF. Haystack is 
designed to work within the framework of the Semantic Web. 
However, the focus is on aggregating data from users' lives as 
well as from the Semantic Web into a personalized repository. 

2. OVERVIEW OF THE SYSTEM 
In order to motivate the types of problems that need to be 
overcome in a system that aggregates information of various types 
from various sources, we illustrate an example interaction 
between the user and Haystack. 

Figure 1 shows the user’s home page, which is displayed when 
Haystack’s user interface (called Ozone) is first started. Like a 
portal, the Ozone home page brings together in one screen 
information important to the user. This information is maintained 
by agents working in the background. The actual presentation of 
this information is decoupled from the agents and is the 
responsibility of Ozone UI components called views. For instance, 
the home page displays the user’s Items Needing Attention 
collection, which is managed by the Incoming Agent. When 

messages arrive, the Incoming Agent may decide to enter them 
into the Items Needing Attention collection. Similarly, when read 
messages have been in the Items Needing Attention collection for 
some period of time, the Incoming Agent may decide to remove 
them. These mutations to the Items Needing Attention collection 
are automatically detected by the collection view sitting on the 
home page; the view updates the display accordingly. One can 
envision the Incoming Agent taking on more intelligent behaviors 
in the future, such as moving a message deduced to be important 
but yet unread to the top of the collection. 

The Items Needing Attention collection, like an e-mail inbox, 
displays a list of e-mail messages that were recently received and 
need to be read by the user. However, like all collections in 
Haystack, the Items Needing Attention collection is 
heterogeneous and contains meetings, to-do items, and other 
documents in addition to e-mail messages.  

When a view of a collection is rendered to the screen, Ozone 
iterates through the members of the collection, recursively locates 
views for these members, and instantiates them within the 
collection view. In other words, Ozone calls upon views 

 

Figure 1. Ozone screenshot 

 



 

specifically designed to present certain types of data to display 
those data.  

Furthermore, strings of text on the screen corresponding to 
meetings, to-do items, or e-mail messages are not merely dead 
pixels. Instead, users can manipulate them with context menus 
and drag and drop them between different areas of the screen. 
For example, one can imagine dragging an e-mail from the Items 
Needing Attention view to the calendar in order to set up an 
appointment. Because the UI framework maintains the mapping 
from each visual UI element, e.g. strings of text, to associated 
underlying semantic objects, e.g. e-mail messages, the drag and 
drop operation can be associated with the semantic object being 
dragged, and as a result, the calendar view can intelligently 
determine an appropriate response to the drop operation. This 
mapping forms the basis of what we call the Semantic User 
Interface. 

By removing the burden of user interface rendering from the 
agents, the software designers are encouraged to enrich the agents 
with more capabilities. One can imagine prolific collaboration 
between different agents in the Haystack system. For instance, 
upon retrieving the weather forecast for today, the Weather Agent 
can notify the Calendar Agent of the grave possibility of a snow 
storm approaching; the Calendar Agent in turn can attempt to 
reschedule the user’s appointments appropriately. In other 
systems, especially portals, the focus of a weather agent would be 
on rendering the weather as HTML, not interacting with other 
agents to maximize end user benefit. 

The news applet displays news downloaded from Resource Site 
Summary (RSS) feeds of interest to the user. The RSS Agent 
downloads news on a periodic basis and incorporates the RSS 
files (which are RDF) into the user’s corpus. To take advantage of 
the collection view for displaying news, another agent translates 
the news from the RSS ontology into the Haystack collection 
ontology. In the future it will be possible to have another agent 
filter the RSS feeds for the particular articles thought to be most 
interesting to the user. 

Furthermore, the layout of the entire home page and all of its 
customizations are described in metadata. As with other objects, 
this layout can be annotated, categorized, and sent to others.  

3. SUPPORTING USER INTERACTION 
WITH SEMI-STRUCTURED DATA 
As Haystack uses RDF to bring together various kinds of 
information from different sources, there is a need to present and 
allow the user to interact with such a diverse pool of data in a 
systematic and manageable fashion. In existing software 
applications, the popular way, if not the only way, to deal with 
heterogeneous information is to segregate the data into different 
storage formats and to allow access to it through separate 
independent programs. The segregation by formats locks up the 
data in the various applications and prevents rich aggregations of 
the information that are useful and meaningful to the user. Such 
rich aggregations are also rendered impossible when each type of 
data is only accessible through the interface of one application. In 
other words, the user interfaces of existing applications cannot 
cooperate or mingle. 

Now that Haystack’s use of RDF has removed the segregation of 
data by formats, there arises an opportunity to create a new user 
interface that provides seamlessly combined presentations of 

previously disparate information. We propose the Semantic User 
Interface (SUI) paradigm, which relies on extensive reuse of UI 
components to present heterogeneous information. In this 
paradigm, every piece of information, however small, is assigned 
one or more UI components called views capable of rendering it. 
Larger bodies of information are rendered by assembling together 
the views of smaller pieces. In such a fashion Haystack’s entire UI 
is constructed dynamically. 

We propose that the SUI paradigm has several benefits. First, the 
extensive reuse of UI components avoids duplicate work for the 
UI designers and lowers the barrier of UI work for non-UI 
designers. Second, the paradigm also dictates that views be kept in 
synchrony with the pieces of data that they display, allowing one 
to change the data being presented without having to actively 
update the presentation. Consequently, one can concentrate on 
processing information without having to worry about how that 
information is being displayed. Finally, extensive reuse of UI 
components and systematic UI construction result in a more 
consistent and predictable user interface for the user to interact 
with. 

3.1 The Problem with Existing UI 
Technologies 
Before we dive into the principles of the Semantic UI paradigm 
and its implementation details in Haystack, it is crucial to point 
out the major flaw of existing UI technologies that render them 
unsuitable for the needs of our system: they rarely allow UI work 
to be reusable. Each UI designer must add his or her own code to 
present data that is already displayed in proper form somewhere 
else by someone else. Take the example in which a UI designer 
needs to develop the interface for a CD burning utility that allows 
the user to select several files from several directories to transfer 
to a CD. The selected files should preferably be displayed in a list 
view with useful fields including file name, file size, file type, 
date, author, etc. The operating system’s file browser already 
knows how to render a list view showing files in a single 
directory. In fact, the file browser knows how to render a list view 
item for any file in any directory. However, it is not possible to 
embed such list view items rendered by the file browser to show 
files from different directories in a single list view. The 
granularity of embeddable components is at the list view level, not 
at the list view item level. Consequently, the UI designer is forced 
to attempt to duplicate some rendering capabilities of the file 
browser in his or her own software. 

There do exist some mechanisms for embedding UI components 
within one another (e.g., Object Linking & Embedding (OLE) 
framework, Model-View-Controller (MVC) paradigm), but these 
mechanisms are insufficient for our purposes. In the MVC 
paradigm, a UI designer wishing to reuse an existing view must 
explicitly specify that view’s implementation in his or her UI 
construction code. Should the view’s implementation be replaced, 
the UI designer’s code becomes outdated. The OLE framework 
resolves this problem by providing a dynamic binding scheme that 
looks up and then embeds view implementations dynamically at 
runtime. However, for each piece of data whose view is desired, 
the OLE framework can only instantiate one view—often the 
content view. The UI designer cannot specify the type of view to 
embed. In many cases, the view provided for a piece of data is too 
coarse in the context where it is embedded. In the example of the 
CD burning utility, individual list view items are needed but only 
a whole list view can be reused. 



 

Because existing UI technologies are not powerful enough to 
support flexible reuse of UI components, each UI designer is left 
to improvise his or her own user interface design. He or she writes 
code to display almost each and every type of data that his or her 
application deals with. Even in the same application, features 
written by different UI designers contain different code fragments 
to display the same type of data. Those code fragments provide 
different UI capabilities to their corresponding UI elements. In 
many cases, the piece of data that the user wants to interact with is 
readily displayed, but its UI representation is no more than dead 
pixels on the screen, affording no means for interaction, so that 
the user is forced to take a different UI route to manipulate it. This 
is a subtle but prevalent and severe inconsistency in today’s user 
interfaces. 

Figure 2 and Figure 3 illustrate such an inconsistency. A contact 
name shown in the “From” column for an e-mail message in a list 
view (Figure 2) should expose the same actions as the same 
contact name shown in the “From” text field in the e-mail 
message window (Figure 3). In Microsoft Outlook 2002 and other 
existing e-mail clients, those two elements provide almost entirely 
different sets of actions. The former element is a dead text string 
painted as part of the whole list view item representing the e-mail 
message. Right-clicking on it is equivalent to right-clicking 
anywhere else in that list view item. The same context menu for 
the whole message is always shown regardless of the right-click 
location. The latter element is a control by itself. It represents a 
contact object and shows the context menu applicable to that 
object when right-clicked. To the user, both elements represent 
the same contact object and should give the same context menu. It 
is this type of inconsistency that we wish to eliminate in 
Haystack’s user interface. 

 

 

Figure 2. Actions for a contact name in a list view (Microsoft 
Outlook 2002) 

 

 

Figure 3. Actions for a contact name in the e-mail compose 
window (Microsoft Outlook 2002) 

3.2 Principle of Reuse 
In order to build a consistent user interface, the Semantic User 
Interface paradigm facilitates and encourages extensive reuse of 
UI components. The paradigm specifies a dynamic binding 
scheme for embedding views much like the scheme used in the 
OLE paradigm. However, while OLE and MVC rarely employ 
more than one level of embedding, the SUI paradigm encourages 
arbitrarily deep nesting of views. Furthermore, SUI views need 
not be rectangular child windows. They can be inline segments of 
text that flow through several lines. This flexibility makes views 
versatile and easy to embed anywhere. In fact, the SUI paradigm 
strongly advocates that each UI designer specializes in handling 
only the types of data that he or she knows best and embeds views 
made by other UI designers for other types of data. 

The mapping from a piece of information, or a type of 
information, to the views capable of rendering it is stored entirely 
as metadata in the RDF store of Haystack. The metadata describes 
the types and formats of data that each view is capable of 
presenting as well as the contexts in which each view is 
appropriate. Note that each piece of information can have more 
than one view: an audio file can be summarized in one line of text 
based on its play time, artist, title, etc., or it can be viewed in an 
audio player that takes up a whole window. The former view is 
appropriate where a short description is desired, and the latter 
should be used when the user focuses solely on the audio file. Just 
as the data types to be displayed and their schemata change 
frequently, so do the metadata for the views capable of rendering 
them.  RDF is powerful enough to capture all of such view 
mapping specifications and to handle all future extensions to the 
system. Furthermore, RDF’s generic benefit of portability allows 
for easy deployment and upgrade of UI components and easy 
exchange of UI capabilities among Haystack users. 

3.3 Constructing UI Dynamically 
The Haystack user interface infrastructure provides a component 
called the view selector that performs the mapping from data to 
view automatically. While designing a particular view, a UI 
designer can insert view selectors to embed inner views within 
this view. At runtime, the view selectors look up and instantiate 
appropriate inner views. In essence, the view selectors compose 
the UI dynamically as a hierarchy of nested views by acting as the 
level of indirection in the dynamic binding scheme of the SUI 
paradigm. They effectively raise the level of abstraction for the UI 



 

designers, inasmuch as the designer of the outer view needs not 
know the details of how the inner view is constructed but can 
simply delegate the task of constructing the proper inner view to 
the view selector. 

Figure 4 shows an example of nested views: part (b) highlights the 
boundaries of the view selectors used to construct the piece of UI 
shown in part (a). The view for a meeting is built by embedding 
the views for the various meeting fields such as Time, Location, 
and Attendees. The value of the Location field is a Room object, 
which is rendered with a view. This view in turn embeds another 
view that renders the building “B13.” Similarly, the view showing 
the collection of attendees embeds an inner view for each of the 
collection members. Note that the view for the collection is not 
rectangular: it flows like text onto more than one line. 

 

 

(a) 

 

(b) 

Figure 4. Example of nested views 

When the view selector component is used as the sole mechanism 
for constructing views, it becomes a single point of intelligence. 
Its capabilities are inherited in every part of the UI and any 
improvement to the component translates to a system-wide 
improvement. 

3.4 Keeping UI Up to Date 
In order to make a view a faithful representation of the 
corresponding piece of information, the SUI paradigm specifies 
that the view should register for notifications from the RDF store 
upon any change to the information that it displays. For instance, 
“stacker” views have been designed to present collections 
dynamically. (A collection is a mathematical set of objects.) 
Given a collection, a stacker view constructs a view selector for 
each element in that collection and stacks the view selectors in 
some specified sorting order. The stacker view also registers for 
notifications upon any change to that collection. If a new element 
is added to the collection, the stacker view constructs a new view 
selector for it. If an existing element is removed, the stacker view 
removes the corresponding view selector. Figure 1 shows several 
stacker views used to display collections including “Favorites” 
and “Your News.” 

A UI designer who makes use of a stacker view needs only 
specify the sorting order for the elements and the specifications 

for the dynamically constructed view selectors so that appropriate 
views of elements are produced. The stacker views have 
effectively raised the level of abstraction for rendering collections. 
In the future, grouping and other high level presentation logics 
will be supported. 

The stacker views, with their ability to update the UI dynamically, 
effectively decouple the information processing tasks from the UI 
presentation tasks. That is, one can concentrate on managing the 
elements inside a collection without concerning oneself with how 
that collection is being displayed. Since the UI gives a faithful 
representation of the data, the view of that collection always 
reflects the contents of the collection. This capability lowers the 
barrier of entry for development for both UI designers and those 
concerned solely with information processing. 

3.5 Supporting UI Features Uniformly 
Because each piece of data is presented by a view, for any pixel 
on the screen, there is a systematic way to detect which of the 
currently displayed views enclose that pixel and to trace back to 
the corresponding pieces of data being presented by those views. 
That is, for every rendered pixel there is a connection back to the 
data that the pixel represents. For this reason the paradigm is 
called “semantic.” 

 

  

Figure 5. Sample context menu elements presenting the same 
piece of data afford the same set of actions corresponding to 
that data. 

Using these live connections between elements on the screen and 
the data they represent, it is easy to systematically support 
features such as context menus and drag and drop consistently 
throughout the Haystack user interface. For instance, in Figure 5, 
when the user right-clicks on the text string “Vineet Sinha”, we 
can trace back through all of the pieces of data that the clicked 
pixel represents and construct a context menu listing all actions 
applicable to those pieces of data. Of note in Figure 5 are some 
capabilities not provided in existing e-mail clients. In particular, 



 

the “Text”  section in the menu offers ways to copy, look up, and 
spell-check an otherwise dead piece of text. In existing e-mail 
clients, only text inside e-mail bodies can be spell-checked. One 
can also imagine the usefulness of spell-checking file names [11] 
and e-mail subjects. Systematic UI construction in our system 
yields a uniform user interface in which features such as context 
menus and drag and drop can be provided pervasively throughout 
the whole application, making the application behave consistently 
and predictably to the user. 

4. AGENT INFRASTRUCTURE 
We now turn our attention to agents, which play an important role 
in not only improving the user experience with regards to keeping 
information organized, but also in performing tedious tasks or 
well-defined processes for the user. We also describe some 
underlying infrastructure needed to make writing and using agents 
in Haystack efficient and secure. 

4.1 Agents 
In the past, programs that aggregated data from multiple sources, 
such as mail merge or customer relationship management, had to 
be capable of speaking numerous protocols with different back-
ends to generate their results. With a rich corpus of information 
such as that present in a user’s Haystack, the possibility for 
automation becomes significant because agents can now be 
written against a single unified abstraction. Furthermore, agents 
can be written to help users deal with information overload by 
extracting key information from e-mail messages and other 
documents and presenting the user with summaries. 

As we alluded to earlier, collections can be maintained 
automatically by agents. Modern information retrieval algorithms 
are capable of grouping documents by similarity or other metrics, 
and previous work has found these automatic classifications to be 
useful in many situations [14]. Additionally, users can build 
collections prescriptively by making a query. An agent, armed 
with a specification of what a user is looking for, can create a 
collection from the results of a query, and it can watch for new 
data entering the system that matches the query.  

For example, agents can automatically filter a user’s e-mail for 
documents that appear to fit in one or more collections defined by 
the user, such as “Website Project”  or “Letters from Mom”. 
Because membership in collections is not one-to-one, this 
classification can occur even while the message remains in the 
user’s inbox. 

Agents are used in Haystack to automatically retrieve and process 
information from various sources, such as e-mail, calendars, the 
World Wide Web, etc. Haystack includes agents that retrieve e-
mail from POP3 servers, extract plaintext from HTML pages, 
generate text summaries, perform text-based classification, 
download RSS subscriptions on a regular basis, fulfill queries, and 
interface with the file system and LDAP servers. 

The core agents are mostly written in Java, but some are written in 
Python. We utilize an RDF ontology derived from WSDL [5] for 
describing the interfaces to agents as well as for noting which 
server processes hosts which agents. As a consequence, we are 
able to support different protocols for communicating between 
agents, from simply passing in-process Java objects around to 
using HTTP-based RPC mechanisms such as HTTP POST and 
SOAP [1]. 

4.2 Belief 
When multiple agents are used to generate the same information, 
issues arise as to how to deal with conflicts. For instance, if one 
agent is tasked with determining the due date of a document by 
using natural language processing and another agent does the 
same by extracting the first date from a document, which is to be 
believed when there is a conflict? In instances such as this, it is 
important that information be tagged with authorship metadata so 
the user can make an informed choice of which statement to 
choose.  

To accomplish this we discuss a part of the system ontology that 
is used for describing attributes about actual statements 
themselves, such as who asserted them and when they were 
asserted. Under the premise that only three values, namely 
subject, predicate, and object, are required to describe statements 
in our model, it is possible to give statements identifiers and to 
assert an author and creation time to the original statement. In 
fact, the RDF model prescribes that in order to make statements 
about statements, the referent statement must be reified into a 
resource and assigned a URI, and the referring statements can 
then use the reified resource in the subject or object field.  

This use of reification brings up a subtle issue concerning RDF. In 
a document containing RDF, it is assumed that all statements are 
asserted to be true by the author [8]. In order to make a statement 
about another statement that the author does not necessarily 
believe is true, the target statement must exist only in reified form. 
In essence, the author is binding a name to a specific statement 
with a certain subject, predicate, and object, but is not asserting 
the statement to be true, only instead asserting other properties 
about that statement using the name.  

Keeping track of various levels of trustworthiness is important in 
a system that contains statements made by numerous independent 
agents, as well as information from users’  colleagues, friends, 
family, solicitors, and clients. In order to maintain metadata on the 
statements themselves in an information store, one solution is to 
have the information store become a “neutral party” , recording 
who said what and when those things were said, but not asserting 
their truth. This is accomplished by having all statements made by 
parties other than the information store reified. (An alternative is 
to have one entity—perhaps the user—be at the same trust level as 
the data store. However, this results in statements made by the 
user being handled in one fashion and those made by others 
(which have been reified) handled in a different fashion. For 
simplicity of implementation, we keep the data store neutral.) 

Once we have a system for recording statement metadata, we can 
examine issues of retraction, denial, and expiration of assertions, 
i.e., statements asserted by specific parties. Consider an example 
where an agent is responsible for generating the title property for 
web pages. Some web pages, such as those whose contents are 
updated daily, have titles that change constantly. Often users want 
to be able to locate pages based on whatever it is they remember 
about the page. One approach for handling constant mutations in 
the information store is to allow agents to delete a previous 
assertion (i.e., remove the statement from the database) and to 
replace it with an up-to-date version. However, it would be 
powerful to allow users to make queries of the form “Show me all 
web pages that had the title Tips for Maintaining Your Car at 
some point in time.”  By allowing agents to retract their assertions, 
that is, record that an agent no longer asserts the statement without 



 

removing it, queries can still be made to retrieve past or obsolete 
information because this information is not deleted. Additionally, 
this system permits users to override an assertion made by an 
agent by denying the assertion, yet retains the denied assertion for 
future reference.  

In a system such as this where multiple parties and agents provide 
information, we are often concerned with impersonation and 
forgery. To solve these problems, we propose supporting digitally 
signed RDF. The digital signature permits the information store to 
determine and verify the author of statements with certainty. In an 
ideal system, users and agents sign all RDF they produce with 
assigned digital signatures. However, the W3C is still working on 
the details of supporting signed RDF at the statement level, and 
the implementation of a digital signature system is beyond the 
scope of this project. For our current prototype, identifier strings 
are used in place of true signatures. 

4.3 Adenine 
In a system such as Haystack, a sizeable amount of code is 
devoted to creation and manipulation of RDF-encoded metadata. 
We observed early on that the development of a language that 
facilitated the types of operations we frequently perform with 
RDF would greatly increase our productivity. As a result, we have 
created Adenine. An example snippet of Adenine code is given in 
Error! Reference source not found.. 

The motivation for creating this language is twofold. The first key 
feature is making the language’s syntax support the data model. 
Introducing the RDF data model into a standard object-oriented 
language is fairly straightforward; after all, object-oriented 
languages were designed specifically to be extensible in this 
fashion. Normally, one creates a class library to support the 
required objects. However, more advanced manipulation 
paradigms specific to an object model begin to tax the syntax of 
the language. In languages such as C++, C#, and Python, operator 
overloading allows programmers to reuse built-in operators for 
manipulating objects, but one is restricted to the existing syntax of 
the language; one cannot easily construct new syntactic structures. 
In Java, operator overloading is not supported, and this results in 
verbose APIs being created for any object oriented system.  

Arguably, this verbosity can be said to improve the readability of 
code. On the other hand, lack of syntactic support for a specific 
object model can be a hindrance to rapid development. Programs 
can end up being much long than necessary because of the 
verbose syntactic structures used. This is the reason behind the 
popularity of domain-specific programming languages, such as 
those used in Matlab, Macromedia Director, etc. Adenine is such 
a language. It includes native support for RDF data types and 
makes it easy to interact with RDF containers and services. 

The other key feature of Adenine is its ability to be compiled into 
RDF. The benefits of this capability can be classified as 
portability and extensibility. Since 1996, p-code virtual machine 
execution models have resurged as a result of Java’s popularity. 
Their key benefit has been portability, enabling interpretation of 
software written for these platforms on vastly different computing 
environments. In essence, p-code is a set of instructions written to 
a portable, predetermined, and byte-encoded ontology. 

 
Figure 6. Sample Adenine code 

Adenine takes the p-code concept one step further by making the 
ontology explicit and extensible and by replacing byte codes with 
RDF. Instead of dealing with the syntactic issue of introducing 
byte codes for new instructions and semantics, Adenine takes 
advantage of RDF’s ability to extend the directed “object code” 
graph with new predicate types. One recent example of a system 
that uses metadata-extensible languages is Microsoft’s Common 
Language Runtime (CLR). In a language such as C#, developer-
defined attributes can be placed on methods, classes, and fields to 
declare metadata ranging from thread safety to serializability. 
Compare this to Java, where serializability was introduced only 
through the creation of a new keyword called transient. The 
keyword approach requires knowledge of these extensions by the 
compiler; the attributes approach delegates this knowledge to the 
runtime and makes the language truly extensible. In Adenine, 
RDF assertions can be applied to any statement.  

These two features make Adenine very similar to Lisp, in that 
both support open-ended data models and both blur the distinction 
between data and code. However, there are some significant 
differences. The most superficial difference is that Adenine’s 
syntax and semantics are especially well-suited to manipulating 
RDF data. Adenine is mostly statically scoped, but has dynamic 
variables that address the current RDF containers from which 
existing statements are queried and to which new statements are 
written. Adenine’s runtime model is also better adapted to being 
run off of an RDF container. Unlike most modern languages, 
Adenine supports two types of program state: in-memory, as is 
with most programming languages, and RDF container-based. 
Adenine in effect supports two kinds of closures, one being an in-
memory closure as is in Lisp, and the other being persistent in an 
RDF container. This affords the developer more explicit control 
over the persistence model for Adenine programs and makes it 
possible for agents written in Adenine to be distributed. 

The syntax of Adenine resembles a combination of Python and 
Lisp, whereas the data types resemble Notation3 [12]. As in 
Python, tabs denote lexical block structure. Backslashes indicate a 
continuation of the current line onto the next line. Curly braces 
({}) surround sets of RDF statements, and identifiers can use 
namespace prefixes (e.g. rdf:type) as shorthand for entering full 
URIs, which are encoded within angle brackets (<>). Literals are 
enclosed within double quotes.  

# Prefixes for simplifying input of URIs 
@prefix : <urn:test-namespace:> 
 
:ImportantMethod rdf:type rdfs:Class 
 
method :expandDerivedClasses ; \ 
rdf:type :ImportantMethod ; \ 
rdfs:comment \ 
"x rdf:type y, y rdfs:subClassOf z => x rdf:type z" 
 # Perform query 
 # First parameter is the query specification 
 # Second is a list of the variables to return, 

# in order 
 = data (query {  
  ?x rdf:type ?y 
  ?y rdfs:subClassOf ?z 
 } (List ?x ?z)) 
  
 # Assert base class types 
 for x in data 
  # Here, x[0] refers to ?x  

# and x[1] refers to ?z 
  add { x[0] rdf:type x[1] } 



 

Adenine is an imperative language, and as such contains standard 
constructs such as functions, for loops, arrays, and objects. 
Function calls resemble Lisp syntax in that they are enclosed in 
parentheses and do not use commas to separate parameters. 
Arrays are indexed with square brackets as they are in Python or 
Java. Also, because the Adenine interpreter is written in Java, 
Adenine code can call methods and access fields of Java objects 
using the dot operator, as is done in Java or Python. The execution 
model is quite similar to that of Java and Python in that an in-
memory environment is used to store variables; in particular, 
execution state is not represented in RDF. Values in Adenine are 
represented as Java objects in the underlying system.  

Adenine methods are functions that are named by URI and are 
compiled into RDF. To execute these functions, the Adenine 
interpreter is passed the URI of the method to be run and the 
parameters to pass to it. The interpreter then constructs an initial 
in-memory environment binding standard names to built-in 
functions and executes the code one instruction at a time. Because 
methods are simply resources of type adenine:Method, one can 
also specify other metadata for methods. In the example given, an 
rdfs:comment is declared and the method is given an additional 
type, and these assertions will be entered directly into the RDF 
container that receives the compiled Adenine code. 

The top level of an Adenine file is used for data and method 
declarations and cannot contain executable code. This is because 
Adenine is in essence an alternate syntax for RDF. Within method 
declarations, however, is code that is compiled into RDF; hence, 
methods are like syntactic sugar for the equivalent Adenine RDF 
“bytecode”. 

Development on Adenine is ongoing, and Adenine is being used 
as a platform for testing new ideas in writing RDF-manipulating 
agents. 

5. DATA STORAGE 
5.1 RDF Store 
Throughout this paper we have emphasized the notion of storing 
and describing all metadata in RDF. It is the job of the RDF store 
to manage this metadata. We provide two implementations of the 
RDF store in Haystack. The first is one built on top of a 
conventional relational database utilizing a JDBC interface. We 
have adopted HSQL, an in-process JDBC-compatible database 
written in Java. However, early experiments showed that for the 
small but frequent queries we were performing to render Ozone 
user interfaces (e.g., following one or two edges from a node), the 
system was slowed by the fixed marshalling and query parsing 
costs involved in composing and then decomposing plaintext SQL 
queries. (The home page displayed in Figure 1 requires well over 
45,000 queries to render.) Switching to a larger scale commercial 
database appears to result in worse performance because of the 
socket connection layer that is added in the process. 

To solve these problems we developed an in-process RDF 
database written in C++ (we use JNI to connect it to the rest of our 
Java code base). By making it specifically suited to RDF, we were 
able to optimize the most heavily used features of the RDF store 
while eliminating a lot of the marshalling and parsing costs.  
However, we acknowledge this to be a temporary solution, and in 
the long term we would prefer to find a database that is well-
suited to the types of small queries that Haystack performs. 

5.2 Storing Unstructured Content 
It is important for us to address how Haystack interacts with 
unstructured data in the existing world. Today, URLs are used to 
represent files, documents, images, web pages, newsgroup 
messages, and other content accessible on a file system or over the 
World Wide Web. The infrastructure for supporting distributed 
storage has been highly developed over the past decades. With the 
advent of technologies such as XML Namespaces and RDF, a 
larger class of identifiers called URIs subsumed URLs. Initially, 
RDF provided a means for annotating web content. Web pages, 
identified by URL, could be referred to in RDF statements in the 
subject field, and this connected the metadata given in RDF to the 
content retrievable by the URL. This is a powerful notion because 
it makes use of the existing storage infrastructure. 

However, with more and more content being described in RDF, 
the question naturally arises: why not store content in RDF? 
While this is certainly possible by our initial assumption that RDF 
can describe anything, we argue this is not the best solution for a 
couple of reasons. First, storing content in RDF would be 
incompatible with existing infrastructure. Second, leveraging 
existing infrastructure is more efficient; in particular, using file 
I/O and web protocols to retrieve files is more efficient than using 
XML encoding. 

Hence, we do not require that existing unstructured content be 
stored as RDF. On the contrary, we believe it makes sense to store 
some of the user’s unstructured data using existing technology. In 
our prototype, we provide storage providers based on HTTP 1.1 
and standard file I/O. This means that storing the content of a 
resource in Haystack can be performed with HTTP PUT, and 
retrieving the content of a resource can be performed with HTTP 
GET, analogously to how other resources’ contents (e.g., web 
pages) are retrieved. Our ontology uses the Content class and its 
derivatives, HTTPContent, FilesystemContent, and LiteralContent 
to abstract the storage of unstructured information. 

6. FUTURE WORK 
Haystack provides a powerful platform for organizing and 
manipulating users’ information. In this section we touch upon 
two topics we are currently investigating that build new 
abstractions on top of the data model discussed above. 

6.1 Collaboration 
Enabling users to work together, exchange information, and 
communicate has become an absolutely essential feature of 
modern information management tools. The focus of current off-
the-shelf products has been on e-mail and newsgroup-style 
discussions. However, the addition of rich metadata manipulation 
facilities creates many possibilities for Haystack in fostering 
collaboration. 

First, Haystack encourages users to have individualized 
ontologies, so converting between these ontologies when 
exchanging data will need to be examined. Agents can be 
instructed in the relationships between different ontologies and 
can perform conversion automatically. As an alternative one can 
imagine an ontological search engine that is consulted whenever a 
user enters data. This way users end up using the same ontologies 
to describe similarly-structured data. 

Second, security issues arise when sharing data. Support for belief 
networks will need to be expanded to allow users to distinguish 
their own information from information obtained from others. 



 

Access control and privacy will need to be examined to allow 
users to feel comfortable about storing information in Haystack. 

Finally, metadata describing individual users’  preferences towards 
certain topics and documents can be used and exchanged to enable 
collaborative filtering. Sites such as epinions.com promote user 
feedback and subjective analysis of merchandise, publications, 
and web sites. Instead of going to a separate site, users’  Haystacks 
can aggregate this data and, by utilizing the belief network, 
present users with suggestions. 

6.2 Customizing Organization Schemes 
We have started to investigate the many ways in which people 
organize their personal information in physical form, such as 
bookcases and piles. We believe that each method of organization 
has different advantages and disadvantages in various situations. 
In light of this, we propose to support several virtual organization 
schemes simultaneously, such that the user can choose the 
appropriate organization scheme to use in each situation. Different 
schemes act like different lenses on the same corpus of 
information. We will provide agents that help the user create and 
maintain these organization schemes. 

6.3 Customizing Schemata 
We are looking to integrate features that allow users to create 
ontologies implicitly as they input information into the system. 
For example, when manipulating data in a graph display such as a 
diagram editor, users are creating terms in an ontology when they 
define custom relationships between different nodes in the graph. 
There is also a need to be able to associate terms defined by the 
user with terms defined by other users. We speculate that agents 
will be able to unify terms together in the background once 
connections are discovered. 

6.4 Customizing User Interfaces 
The fact that the user interfaces are themselves described in RDF 
means that at some level modifying the user interface can be seen 
as a typical metadata manipulation task not that different from, 
say, managing a collection. We aim to develop tools that will 
make it easy for the user to select and customize the most 
effective views for the information with which they work. 
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