
Haystack: A Platform for Creating, Organizing and
Visualizing Information Using RDF

David Huynh
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA 02139

1 (617) 452-5041

dfhuynh@ai.mit.edu

David Karger
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139

1 (617) 258-6167

karger@theory.lcs.mit.edu

Dennis Quan
MIT Artificial Intelligence Laboratory

IBM Internet Technology Division
200 Technology Square
Cambridge, MA 02139

1 (617) 693-4612

dquan@media.mit.edu

ABSTRACT
The Resource Definition Framework (RDF) is designed to support
agent communication on the Web, but it is also suitable as a
framework for modeling and storing individual users’
information. By using RDF in this manner, our Haystack platform
provides information management capabilities personalized to
individual users. This flexible semi-structured data model is
appealing for several reasons. First, RDF supports ontologies
created by the user and tailored to the user’s needs. At the same
time, system ontologies can be specified and evolved to support a
variety of high-level functionalities such as flexible organization
schemes, semantic querying, and collaboration. In addition, we
show that RDF can be used to engineer a user interface
architecture that gives rise to a semantically rich and uniform UI.
We demonstrate that by aggregating various types of users’ data
together in a homogeneous representation, we create opportunities
for agents to make more informed deductions in automating tasks
for users. Finally, we discuss the implementation of an RDF
information store and a programming language specifically suited
for manipulating RDF.

1. INTRODUCTION
A key present day challenge for any individual is making
productive use of the vast amount of information they have and
the even vaster amount that they can easily obtain through the
Internet. A significant barrier to such use is the heterogeneity of
the data itself and of the applications that help users work with
that data. Data objects with close semantic relationships, such as
an e-mail about a project, a web page relevant to it, a calendar
entry of an important project date, and a to-do list about the
project cannot be dealt with in a uniform way—they look different
and are manipulated by distinct applications that do not talk with
each other.

The problem of data heterogeneity on the web is being tackled by
the development of RDF, a common language for the description
of resources and the relationships connecting them [6]. RDF has
been developed to provide interoperability between applications
that exchange machine-understandable information on the Web.
In other words, RDF is well-suited for facilitating Web Services
in resource discovery, cataloging, content rating, and privacy
policies.

While it has mainly been targeted at web automation, we argue
that RDF has great value as a tool for storing, navigating, and
retrieving information in an individual user's information corpus.
The data relevant to a particular activity can be brought together

and manipulated by user interfaces optimized for that activity
rather than for a particular data type. Common information
management tasks, such as searching for information relevant to a
particular query or flagging items of particular interest to a user,
can be delegated to agents that need not waste time dealing with
multiple data formats. By describing all of the user’s data with
one unified semi-structured data model, Haystack enables the
components of the system to concentrate on the semantic
differences in the data without worrying about syntactic or
protocol differences occurring between different systems.
Individual users can extend the data model, adding attributes or
schemata that represent their preferred means of organizing
information, making it easier for them to find information the way
they expect it to be found.

While these added capabilities are attractive, several problems
must be solved in order to attain them. Simply storing a user's data
in RDF is not sufficient; indeed, it is in some sense a step
backward since it is much more complex than the files and folders
model with which users currently work. An interface must be
developed that takes advantage of RDF's rich structure to give its
user a more informative view of their repository without
swamping them. We must help people manipulate unstructured,
semi-structured, and structured data without requiring them to
become skilled database administrators. If agents are to help
manipulate this repository, an appropriate environment must be
designed within which such agents can architected and can
operate and communicate with each other. In this paper, we
propose solutions to these problems.

1.1 Motivation
The goal of the Haystack project is to develop a tool that allows
users to easily manage their documents, e-mail messages,
appointments, tasks, and other information. Haystack is designed
to address four specific needs of the user.

First, the user should be allowed maximum flexibility in how he
or she chooses to describe and organize his or her information.
The system should allow the user to structure his or her data in the
most suitable fashion as perceived by the user.

Second, the system should not create artificial distinctions
between different types of information that would seem unnatural
to the user. This point is related to the previous point in that the
system should not partition a corpus simply because different
programs are used to manipulate different parts of that corpus.
Rather, the system should store all of the user’s information in one

homogeneous representation and allow the user to impose
semantics that partition the data appropriately.

Third, the system should allow the user to easily manipulate and
visualize his or her information in ways appropriate to the task at
hand. The user interface should be aware of the context in which
arbitrary information is being displayed and should present an
appropriate amount of detail.

Fourth, the user should be able to delegate certain information
processing tasks to agents. Regardless of how powerful a user
interface we provide, there will still be many repetitive tasks
facing users, and we feel that users will benefit from automation.

1.2 Contribution
By addressing these four needs, Haystack is able to use its RDF-
based semi-structured data model to extend several significant
benefits to users. RDF can be readily exploited to add semantics
to existing information management frameworks and to serve as a
lingua franca between different corpora. On top of this, we
provide an ontology that supports capabilities including
collection-based organization, semantic categorization,
collaboration and trust management. By ontology we are referring
to a vocabulary that specifies a set of classes and the properties
possessed by objects of these classes. A representative screenshot
of our system in Section 2 helps to illustrate some of these
capabilities further.

In Section 3, we argue that representing information in RDF lets
us develop a semantic user interface for presenting information
in a uniform, natural fashion. Instead of presenting each data type
inside a distinct application, our interface allows distinct data
types to be seamlessly presented together, with appropriate views
of each type of data being integrated and nested at an extremely
fine level of detail, and appropriate actions for each data type
being available whenever data of that type is in view. In a
convenient self-reference, RDF itself provides a natural way to
represent these information views, allowing the system to
incorporate new “view types” as they are needed.

In Section 4, we discuss the use of RDF for modeling imperative
computational processes. We describe an environment within
which agents can act to automate information management tasks
for the user. We present a language called Adenine as a natural
means for manipulating metadata and thus writing programs for
Haystack. Adenine programs compile into an RDF representation,
affording them the same ability to be annotated, distributed, and
customized as other documents and information. This language
lowers the barrier for writing user interface components and
agents in our system that must flexibly adapt to the underlying
data model.

1.3 History
The information overload problem has become more and more
evident in the past decade, driving the need for better information
management tools. Several research projects have been initiated to
address this issue. The Haystack project [9] [10] was started in
1997 to investigate possible solutions to this very problem. It aims
to create a powerful platform for information management. Since
its creation, the project has sought a data modeling framework
suitable for storing and manipulating a heterogeneous corpus of
metadata in parallel with a user’s documents. With the
introduction of RDF, a good match was found between the
versatility and expressiveness of RDF and the primary need of

Haystack to manage metadata. The project has recently been
reincarnated to make use of RDF as its primary data model.

1.4 Related Work
There have been numerous efforts to augment the user’s data with
metadata. The Placeless Documents project at Xerox PARC [3]
developed an architecture for storing documents based on
properties specified by the user and by the system. Like Haystack,
Placeless Documents supported arbitrary properties on objects and
a collection mechanism for aggregating documents. It also
specified in its schema access control attributes and shared
properties useful for collaboration. The Placeless Documents
architecture leveraged existing storage infrastructure (e.g. web
servers, file systems, databases, IMAP, etc.) through a driver
layer. Similarly, Haystack takes advantage of the same storage
infrastructure, using URLs to identify documents.

While it may seem that Placeless and Haystack are quite alike in
that they use similar data models, much more significant
difference appears in the approach to the user interface.
Placeless’ Presto user interface focused on facilitating
management of data in general using a predetermined set of
interfaces. In developing Haystack, we are experimenting with
ways to incorporate the customization of user interfaces into the
bigger problem of personalized information management by
providing a platform upon which user interfaces can be modeled
and manipulated with the same facility as other metadata.

There are other systems, many in common use today, that permit
arbitrary metadata annotations on files. The Windows NT file
system (NTFS) supports file system-level user-definable
attributes. WebDAV [2], a distributed HTTP-based content
management system, also permits attributes on documents. Lotus
Notes and Microsoft Exchange, two common knowledge
management server solutions, both support custom attributes on
objects within their databases. However, the metadata are not
readily interchangeable among different environments. The
WebDAV and NTFS metadata formats offer little information on
how to present such metadata to the user, making it difficult to
construct user interfaces that improve upon standard key/value
pair editors. Lotus Notes and Microsoft Exchange store form
designs in their stores, but these designs are highly coupled to the
specific schemata of the databases they present and must be
retrofitted when these schemata are customized. Further, the
structure of metadata in these systems is highly constrained and
makes the expression of complex relationships between objects
difficult. For example, these systems do not have first class
support for making assertions about predicates, such as the fact
that a digital signature is not a useful property to display to the
user in raw form, making it difficult for the user interface and
agents to analyze data conforming to a foreign ontology
dynamically.

The Semantic Web project at the World Wide Web Consortium
(W3C), like Haystack, is using RDF to address these issues of
interchangeability [4]. The focus of the Semantic Web effort is to
proliferate RDF-formatted metadata throughout the Internet in
much the same fashion that HTML has been proliferated by the
popularity of web browsers. By building agents that are capable of
consuming RDF, data from multiple sources can be combined in
ways that are presently impractical. The simplest examples
involve resolving scheduling problems between different systems
running different calendaring servers but both speaking RDF. A

more complex example is one where a potential car buyer can
make automated comparisons of different cars showcased on
vendors' web sites because the car data is in RDF. Haystack is
designed to work within the framework of the Semantic Web.
However, the focus is on aggregating data from users' lives as
well as from the Semantic Web into a personalized repository.

2. OVERVIEW OF THE SYSTEM
In order to motivate the types of problems that need to be
overcome in a system that aggregates information of various types
from various sources, we illustrate an example interaction
between the user and Haystack.

Figure 1 shows the user’s home page, which is displayed when
Haystack’s user interface (called Ozone) is first started. Like a
portal, the Ozone home page brings together in one screen
information important to the user. This information is maintained
by agents working in the background. The actual presentation of
this information is decoupled from the agents and is the
responsibility of Ozone UI components called views. For instance,
the home page displays the user’s Items Needing Attention
collection, which is managed by the Incoming Agent. When

messages arrive, the Incoming Agent may decide to enter them
into the Items Needing Attention collection. Similarly, when read
messages have been in the Items Needing Attention collection for
some period of time, the Incoming Agent may decide to remove
them. These mutations to the Items Needing Attention collection
are automatically detected by the collection view sitting on the
home page; the view updates the display accordingly. One can
envision the Incoming Agent taking on more intelligent behaviors
in the future, such as moving a message deduced to be important
but yet unread to the top of the collection.

The Items Needing Attention collection, like an e-mail inbox,
displays a list of e-mail messages that were recently received and
need to be read by the user. However, like all collections in
Haystack, the Items Needing Attention collection is
heterogeneous and contains meetings, to-do items, and other
documents in addition to e-mail messages.

When a view of a collection is rendered to the screen, Ozone
iterates through the members of the collection, recursively locates
views for these members, and instantiates them within the
collection view. In other words, Ozone calls upon views

Figure 1. Ozone screenshot

specifically designed to present certain types of data to display
those data.

Furthermore, strings of text on the screen corresponding to
meetings, to-do items, or e-mail messages are not merely dead
pixels. Instead, users can manipulate them with context menus
and drag and drop them between different areas of the screen.
For example, one can imagine dragging an e-mail from the Items
Needing Attention view to the calendar in order to set up an
appointment. Because the UI framework maintains the mapping
from each visual UI element, e.g. strings of text, to associated
underlying semantic objects, e.g. e-mail messages, the drag and
drop operation can be associated with the semantic object being
dragged, and as a result, the calendar view can intelligently
determine an appropriate response to the drop operation. This
mapping forms the basis of what we call the Semantic User
Interface.

By removing the burden of user interface rendering from the
agents, the software designers are encouraged to enrich the agents
with more capabilities. One can imagine prolific collaboration
between different agents in the Haystack system. For instance,
upon retrieving the weather forecast for today, the Weather Agent
can notify the Calendar Agent of the grave possibility of a snow
storm approaching; the Calendar Agent in turn can attempt to
reschedule the user’s appointments appropriately. In other
systems, especially portals, the focus of a weather agent would be
on rendering the weather as HTML, not interacting with other
agents to maximize end user benefit.

The news applet displays news downloaded from Resource Site
Summary (RSS) feeds of interest to the user. The RSS Agent
downloads news on a periodic basis and incorporates the RSS
files (which are RDF) into the user’s corpus. To take advantage of
the collection view for displaying news, another agent translates
the news from the RSS ontology into the Haystack collection
ontology. In the future it will be possible to have another agent
filter the RSS feeds for the particular articles thought to be most
interesting to the user.

Furthermore, the layout of the entire home page and all of its
customizations are described in metadata. As with other objects,
this layout can be annotated, categorized, and sent to others.

3. SUPPORTING USER INTERACTION
WITH SEMI-STRUCTURED DATA
As Haystack uses RDF to bring together various kinds of
information from different sources, there is a need to present and
allow the user to interact with such a diverse pool of data in a
systematic and manageable fashion. In existing software
applications, the popular way, if not the only way, to deal with
heterogeneous information is to segregate the data into different
storage formats and to allow access to it through separate
independent programs. The segregation by formats locks up the
data in the various applications and prevents rich aggregations of
the information that are useful and meaningful to the user. Such
rich aggregations are also rendered impossible when each type of
data is only accessible through the interface of one application. In
other words, the user interfaces of existing applications cannot
cooperate or mingle.

Now that Haystack’s use of RDF has removed the segregation of
data by formats, there arises an opportunity to create a new user
interface that provides seamlessly combined presentations of

previously disparate information. We propose the Semantic User
Interface (SUI) paradigm, which relies on extensive reuse of UI
components to present heterogeneous information. In this
paradigm, every piece of information, however small, is assigned
one or more UI components called views capable of rendering it.
Larger bodies of information are rendered by assembling together
the views of smaller pieces. In such a fashion Haystack’s entire UI
is constructed dynamically.

We propose that the SUI paradigm has several benefits. First, the
extensive reuse of UI components avoids duplicate work for the
UI designers and lowers the barrier of UI work for non-UI
designers. Second, the paradigm also dictates that views be kept in
synchrony with the pieces of data that they display, allowing one
to change the data being presented without having to actively
update the presentation. Consequently, one can concentrate on
processing information without having to worry about how that
information is being displayed. Finally, extensive reuse of UI
components and systematic UI construction result in a more
consistent and predictable user interface for the user to interact
with.

3.1 The Problem with Existing UI
Technologies
Before we dive into the principles of the Semantic UI paradigm
and its implementation details in Haystack, it is crucial to point
out the major flaw of existing UI technologies that render them
unsuitable for the needs of our system: they rarely allow UI work
to be reusable. Each UI designer must add his or her own code to
present data that is already displayed in proper form somewhere
else by someone else. Take the example in which a UI designer
needs to develop the interface for a CD burning utility that allows
the user to select several files from several directories to transfer
to a CD. The selected files should preferably be displayed in a list
view with useful fields including file name, file size, file type,
date, author, etc. The operating system’s file browser already
knows how to render a list view showing files in a single
directory. In fact, the file browser knows how to render a list view
item for any file in any directory. However, it is not possible to
embed such list view items rendered by the file browser to show
files from different directories in a single list view. The
granularity of embeddable components is at the list view level, not
at the list view item level. Consequently, the UI designer is forced
to attempt to duplicate some rendering capabilities of the file
browser in his or her own software.

There do exist some mechanisms for embedding UI components
within one another (e.g., Object Linking & Embedding (OLE)
framework, Model-View-Controller (MVC) paradigm), but these
mechanisms are insufficient for our purposes. In the MVC
paradigm, a UI designer wishing to reuse an existing view must
explicitly specify that view’s implementation in his or her UI
construction code. Should the view’s implementation be replaced,
the UI designer’s code becomes outdated. The OLE framework
resolves this problem by providing a dynamic binding scheme that
looks up and then embeds view implementations dynamically at
runtime. However, for each piece of data whose view is desired,
the OLE framework can only instantiate one view—often the
content view. The UI designer cannot specify the type of view to
embed. In many cases, the view provided for a piece of data is too
coarse in the context where it is embedded. In the example of the
CD burning utility, individual list view items are needed but only
a whole list view can be reused.

Because existing UI technologies are not powerful enough to
support flexible reuse of UI components, each UI designer is left
to improvise his or her own user interface design. He or she writes
code to display almost each and every type of data that his or her
application deals with. Even in the same application, features
written by different UI designers contain different code fragments
to display the same type of data. Those code fragments provide
different UI capabilities to their corresponding UI elements. In
many cases, the piece of data that the user wants to interact with is
readily displayed, but its UI representation is no more than dead
pixels on the screen, affording no means for interaction, so that
the user is forced to take a different UI route to manipulate it. This
is a subtle but prevalent and severe inconsistency in today’s user
interfaces.

Figure 2 and Figure 3 illustrate such an inconsistency. A contact
name shown in the “From” column for an e-mail message in a list
view (Figure 2) should expose the same actions as the same
contact name shown in the “From” text field in the e-mail
message window (Figure 3). In Microsoft Outlook 2002 and other
existing e-mail clients, those two elements provide almost entirely
different sets of actions. The former element is a dead text string
painted as part of the whole list view item representing the e-mail
message. Right-clicking on it is equivalent to right-clicking
anywhere else in that list view item. The same context menu for
the whole message is always shown regardless of the right-click
location. The latter element is a control by itself. It represents a
contact object and shows the context menu applicable to that
object when right-clicked. To the user, both elements represent
the same contact object and should give the same context menu. It
is this type of inconsistency that we wish to eliminate in
Haystack’s user interface.

Figure 2. Actions for a contact name in a list view (Microsoft
Outlook 2002)

Figure 3. Actions for a contact name in the e-mail compose
window (Microsoft Outlook 2002)

3.2 Principle of Reuse
In order to build a consistent user interface, the Semantic User
Interface paradigm facilitates and encourages extensive reuse of
UI components. The paradigm specifies a dynamic binding
scheme for embedding views much like the scheme used in the
OLE paradigm. However, while OLE and MVC rarely employ
more than one level of embedding, the SUI paradigm encourages
arbitrarily deep nesting of views. Furthermore, SUI views need
not be rectangular child windows. They can be inline segments of
text that flow through several lines. This flexibility makes views
versatile and easy to embed anywhere. In fact, the SUI paradigm
strongly advocates that each UI designer specializes in handling
only the types of data that he or she knows best and embeds views
made by other UI designers for other types of data.

The mapping from a piece of information, or a type of
information, to the views capable of rendering it is stored entirely
as metadata in the RDF store of Haystack. The metadata describes
the types and formats of data that each view is capable of
presenting as well as the contexts in which each view is
appropriate. Note that each piece of information can have more
than one view: an audio file can be summarized in one line of text
based on its play time, artist, title, etc., or it can be viewed in an
audio player that takes up a whole window. The former view is
appropriate where a short description is desired, and the latter
should be used when the user focuses solely on the audio file. Just
as the data types to be displayed and their schemata change
frequently, so do the metadata for the views capable of rendering
them. RDF is powerful enough to capture all of such view
mapping specifications and to handle all future extensions to the
system. Furthermore, RDF’s generic benefit of portability allows
for easy deployment and upgrade of UI components and easy
exchange of UI capabilities among Haystack users.

3.3 Constructing UI Dynamically
The Haystack user interface infrastructure provides a component
called the view selector that performs the mapping from data to
view automatically. While designing a particular view, a UI
designer can insert view selectors to embed inner views within
this view. At runtime, the view selectors look up and instantiate
appropriate inner views. In essence, the view selectors compose
the UI dynamically as a hierarchy of nested views by acting as the
level of indirection in the dynamic binding scheme of the SUI
paradigm. They effectively raise the level of abstraction for the UI

designers, inasmuch as the designer of the outer view needs not
know the details of how the inner view is constructed but can
simply delegate the task of constructing the proper inner view to
the view selector.

Figure 4 shows an example of nested views: part (b) highlights the
boundaries of the view selectors used to construct the piece of UI
shown in part (a). The view for a meeting is built by embedding
the views for the various meeting fields such as Time, Location,
and Attendees. The value of the Location field is a Room object,
which is rendered with a view. This view in turn embeds another
view that renders the building “B13.” Similarly, the view showing
the collection of attendees embeds an inner view for each of the
collection members. Note that the view for the collection is not
rectangular: it flows like text onto more than one line.

(a)

(b)

Figure 4. Example of nested views

When the view selector component is used as the sole mechanism
for constructing views, it becomes a single point of intelligence.
Its capabilities are inherited in every part of the UI and any
improvement to the component translates to a system-wide
improvement.

3.4 Keeping UI Up to Date
In order to make a view a faithful representation of the
corresponding piece of information, the SUI paradigm specifies
that the view should register for notifications from the RDF store
upon any change to the information that it displays. For instance,
“stacker” views have been designed to present collections
dynamically. (A collection is a mathematical set of objects.)
Given a collection, a stacker view constructs a view selector for
each element in that collection and stacks the view selectors in
some specified sorting order. The stacker view also registers for
notifications upon any change to that collection. If a new element
is added to the collection, the stacker view constructs a new view
selector for it. If an existing element is removed, the stacker view
removes the corresponding view selector. Figure 1 shows several
stacker views used to display collections including “Favorites”
and “Your News.”

A UI designer who makes use of a stacker view needs only
specify the sorting order for the elements and the specifications

for the dynamically constructed view selectors so that appropriate
views of elements are produced. The stacker views have
effectively raised the level of abstraction for rendering collections.
In the future, grouping and other high level presentation logics
will be supported.

The stacker views, with their ability to update the UI dynamically,
effectively decouple the information processing tasks from the UI
presentation tasks. That is, one can concentrate on managing the
elements inside a collection without concerning oneself with how
that collection is being displayed. Since the UI gives a faithful
representation of the data, the view of that collection always
reflects the contents of the collection. This capability lowers the
barrier of entry for development for both UI designers and those
concerned solely with information processing.

3.5 Supporting UI Features Uniformly
Because each piece of data is presented by a view, for any pixel
on the screen, there is a systematic way to detect which of the
currently displayed views enclose that pixel and to trace back to
the corresponding pieces of data being presented by those views.
That is, for every rendered pixel there is a connection back to the
data that the pixel represents. For this reason the paradigm is
called “semantic.”

Figure 5. Sample context menu elements presenting the same
piece of data afford the same set of actions corresponding to
that data.

Using these live connections between elements on the screen and
the data they represent, it is easy to systematically support
features such as context menus and drag and drop consistently
throughout the Haystack user interface. For instance, in Figure 5,
when the user right-clicks on the text string “Vineet Sinha”, we
can trace back through all of the pieces of data that the clicked
pixel represents and construct a context menu listing all actions
applicable to those pieces of data. Of note in Figure 5 are some
capabilities not provided in existing e-mail clients. In particular,

the “Text” section in the menu offers ways to copy, look up, and
spell-check an otherwise dead piece of text. In existing e-mail
clients, only text inside e-mail bodies can be spell-checked. One
can also imagine the usefulness of spell-checking file names [11]
and e-mail subjects. Systematic UI construction in our system
yields a uniform user interface in which features such as context
menus and drag and drop can be provided pervasively throughout
the whole application, making the application behave consistently
and predictably to the user.

4. AGENT INFRASTRUCTURE
We now turn our attention to agents, which play an important role
in not only improving the user experience with regards to keeping
information organized, but also in performing tedious tasks or
well-defined processes for the user. We also describe some
underlying infrastructure needed to make writing and using agents
in Haystack efficient and secure.

4.1 Agents
In the past, programs that aggregated data from multiple sources,
such as mail merge or customer relationship management, had to
be capable of speaking numerous protocols with different back-
ends to generate their results. With a rich corpus of information
such as that present in a user’s Haystack, the possibility for
automation becomes significant because agents can now be
written against a single unified abstraction. Furthermore, agents
can be written to help users deal with information overload by
extracting key information from e-mail messages and other
documents and presenting the user with summaries.

As we alluded to earlier, collections can be maintained
automatically by agents. Modern information retrieval algorithms
are capable of grouping documents by similarity or other metrics,
and previous work has found these automatic classifications to be
useful in many situations [14]. Additionally, users can build
collections prescriptively by making a query. An agent, armed
with a specification of what a user is looking for, can create a
collection from the results of a query, and it can watch for new
data entering the system that matches the query.

For example, agents can automatically filter a user’s e-mail for
documents that appear to fit in one or more collections defined by
the user, such as “Website Project” or “Letters from Mom”.
Because membership in collections is not one-to-one, this
classification can occur even while the message remains in the
user’s inbox.

Agents are used in Haystack to automatically retrieve and process
information from various sources, such as e-mail, calendars, the
World Wide Web, etc. Haystack includes agents that retrieve e-
mail from POP3 servers, extract plaintext from HTML pages,
generate text summaries, perform text-based classification,
download RSS subscriptions on a regular basis, fulfill queries, and
interface with the file system and LDAP servers.

The core agents are mostly written in Java, but some are written in
Python. We utilize an RDF ontology derived from WSDL [5] for
describing the interfaces to agents as well as for noting which
server processes hosts which agents. As a consequence, we are
able to support different protocols for communicating between
agents, from simply passing in-process Java objects around to
using HTTP-based RPC mechanisms such as HTTP POST and
SOAP [1].

4.2 Belief
When multiple agents are used to generate the same information,
issues arise as to how to deal with conflicts. For instance, if one
agent is tasked with determining the due date of a document by
using natural language processing and another agent does the
same by extracting the first date from a document, which is to be
believed when there is a conflict? In instances such as this, it is
important that information be tagged with authorship metadata so
the user can make an informed choice of which statement to
choose.

To accomplish this we discuss a part of the system ontology that
is used for describing attributes about actual statements
themselves, such as who asserted them and when they were
asserted. Under the premise that only three values, namely
subject, predicate, and object, are required to describe statements
in our model, it is possible to give statements identifiers and to
assert an author and creation time to the original statement. In
fact, the RDF model prescribes that in order to make statements
about statements, the referent statement must be reified into a
resource and assigned a URI, and the referring statements can
then use the reified resource in the subject or object field.

This use of reification brings up a subtle issue concerning RDF. In
a document containing RDF, it is assumed that all statements are
asserted to be true by the author [8]. In order to make a statement
about another statement that the author does not necessarily
believe is true, the target statement must exist only in reified form.
In essence, the author is binding a name to a specific statement
with a certain subject, predicate, and object, but is not asserting
the statement to be true, only instead asserting other properties
about that statement using the name.

Keeping track of various levels of trustworthiness is important in
a system that contains statements made by numerous independent
agents, as well as information from users’ colleagues, friends,
family, solicitors, and clients. In order to maintain metadata on the
statements themselves in an information store, one solution is to
have the information store become a “neutral party” , recording
who said what and when those things were said, but not asserting
their truth. This is accomplished by having all statements made by
parties other than the information store reified. (An alternative is
to have one entity—perhaps the user—be at the same trust level as
the data store. However, this results in statements made by the
user being handled in one fashion and those made by others
(which have been reified) handled in a different fashion. For
simplicity of implementation, we keep the data store neutral.)

Once we have a system for recording statement metadata, we can
examine issues of retraction, denial, and expiration of assertions,
i.e., statements asserted by specific parties. Consider an example
where an agent is responsible for generating the title property for
web pages. Some web pages, such as those whose contents are
updated daily, have titles that change constantly. Often users want
to be able to locate pages based on whatever it is they remember
about the page. One approach for handling constant mutations in
the information store is to allow agents to delete a previous
assertion (i.e., remove the statement from the database) and to
replace it with an up-to-date version. However, it would be
powerful to allow users to make queries of the form “Show me all
web pages that had the title Tips for Maintaining Your Car at
some point in time.” By allowing agents to retract their assertions,
that is, record that an agent no longer asserts the statement without

removing it, queries can still be made to retrieve past or obsolete
information because this information is not deleted. Additionally,
this system permits users to override an assertion made by an
agent by denying the assertion, yet retains the denied assertion for
future reference.

In a system such as this where multiple parties and agents provide
information, we are often concerned with impersonation and
forgery. To solve these problems, we propose supporting digitally
signed RDF. The digital signature permits the information store to
determine and verify the author of statements with certainty. In an
ideal system, users and agents sign all RDF they produce with
assigned digital signatures. However, the W3C is still working on
the details of supporting signed RDF at the statement level, and
the implementation of a digital signature system is beyond the
scope of this project. For our current prototype, identifier strings
are used in place of true signatures.

4.3 Adenine
In a system such as Haystack, a sizeable amount of code is
devoted to creation and manipulation of RDF-encoded metadata.
We observed early on that the development of a language that
facilitated the types of operations we frequently perform with
RDF would greatly increase our productivity. As a result, we have
created Adenine. An example snippet of Adenine code is given in
Error! Reference source not found..

The motivation for creating this language is twofold. The first key
feature is making the language’s syntax support the data model.
Introducing the RDF data model into a standard object-oriented
language is fairly straightforward; after all, object-oriented
languages were designed specifically to be extensible in this
fashion. Normally, one creates a class library to support the
required objects. However, more advanced manipulation
paradigms specific to an object model begin to tax the syntax of
the language. In languages such as C++, C#, and Python, operator
overloading allows programmers to reuse built-in operators for
manipulating objects, but one is restricted to the existing syntax of
the language; one cannot easily construct new syntactic structures.
In Java, operator overloading is not supported, and this results in
verbose APIs being created for any object oriented system.

Arguably, this verbosity can be said to improve the readability of
code. On the other hand, lack of syntactic support for a specific
object model can be a hindrance to rapid development. Programs
can end up being much long than necessary because of the
verbose syntactic structures used. This is the reason behind the
popularity of domain-specific programming languages, such as
those used in Matlab, Macromedia Director, etc. Adenine is such
a language. It includes native support for RDF data types and
makes it easy to interact with RDF containers and services.

The other key feature of Adenine is its ability to be compiled into
RDF. The benefits of this capability can be classified as
portability and extensibility. Since 1996, p-code virtual machine
execution models have resurged as a result of Java’s popularity.
Their key benefit has been portability, enabling interpretation of
software written for these platforms on vastly different computing
environments. In essence, p-code is a set of instructions written to
a portable, predetermined, and byte-encoded ontology.

Figure 6. Sample Adenine code

Adenine takes the p-code concept one step further by making the
ontology explicit and extensible and by replacing byte codes with
RDF. Instead of dealing with the syntactic issue of introducing
byte codes for new instructions and semantics, Adenine takes
advantage of RDF’s ability to extend the directed “object code”
graph with new predicate types. One recent example of a system
that uses metadata-extensible languages is Microsoft’s Common
Language Runtime (CLR). In a language such as C#, developer-
defined attributes can be placed on methods, classes, and fields to
declare metadata ranging from thread safety to serializability.
Compare this to Java, where serializability was introduced only
through the creation of a new keyword called transient. The
keyword approach requires knowledge of these extensions by the
compiler; the attributes approach delegates this knowledge to the
runtime and makes the language truly extensible. In Adenine,
RDF assertions can be applied to any statement.

These two features make Adenine very similar to Lisp, in that
both support open-ended data models and both blur the distinction
between data and code. However, there are some significant
differences. The most superficial difference is that Adenine’s
syntax and semantics are especially well-suited to manipulating
RDF data. Adenine is mostly statically scoped, but has dynamic
variables that address the current RDF containers from which
existing statements are queried and to which new statements are
written. Adenine’s runtime model is also better adapted to being
run off of an RDF container. Unlike most modern languages,
Adenine supports two types of program state: in-memory, as is
with most programming languages, and RDF container-based.
Adenine in effect supports two kinds of closures, one being an in-
memory closure as is in Lisp, and the other being persistent in an
RDF container. This affords the developer more explicit control
over the persistence model for Adenine programs and makes it
possible for agents written in Adenine to be distributed.

The syntax of Adenine resembles a combination of Python and
Lisp, whereas the data types resemble Notation3 [12]. As in
Python, tabs denote lexical block structure. Backslashes indicate a
continuation of the current line onto the next line. Curly braces
({}) surround sets of RDF statements, and identifiers can use
namespace prefixes (e.g. rdf:type) as shorthand for entering full
URIs, which are encoded within angle brackets (<>). Literals are
enclosed within double quotes.

Prefixes for simplifying input of URIs
@prefix : <urn:test-namespace:>

:ImportantMethod rdf:type rdfs:Class

method :expandDerivedClasses ; \
rdf:type :ImportantMethod ; \
rdfs:comment \
"x rdf:type y, y rdfs:subClassOf z => x rdf:type z"
 # Perform query
 # First parameter is the query specification
 # Second is a list of the variables to return,

in order
 = data (query {
 ?x rdf:type ?y
 ?y rdfs:subClassOf ?z
 } (List ?x ?z))

 # Assert base class types
 for x in data
 # Here, x[0] refers to ?x

and x[1] refers to ?z
 add { x[0] rdf:type x[1] }

Adenine is an imperative language, and as such contains standard
constructs such as functions, for loops, arrays, and objects.
Function calls resemble Lisp syntax in that they are enclosed in
parentheses and do not use commas to separate parameters.
Arrays are indexed with square brackets as they are in Python or
Java. Also, because the Adenine interpreter is written in Java,
Adenine code can call methods and access fields of Java objects
using the dot operator, as is done in Java or Python. The execution
model is quite similar to that of Java and Python in that an in-
memory environment is used to store variables; in particular,
execution state is not represented in RDF. Values in Adenine are
represented as Java objects in the underlying system.

Adenine methods are functions that are named by URI and are
compiled into RDF. To execute these functions, the Adenine
interpreter is passed the URI of the method to be run and the
parameters to pass to it. The interpreter then constructs an initial
in-memory environment binding standard names to built-in
functions and executes the code one instruction at a time. Because
methods are simply resources of type adenine:Method, one can
also specify other metadata for methods. In the example given, an
rdfs:comment is declared and the method is given an additional
type, and these assertions will be entered directly into the RDF
container that receives the compiled Adenine code.

The top level of an Adenine file is used for data and method
declarations and cannot contain executable code. This is because
Adenine is in essence an alternate syntax for RDF. Within method
declarations, however, is code that is compiled into RDF; hence,
methods are like syntactic sugar for the equivalent Adenine RDF
“bytecode”.

Development on Adenine is ongoing, and Adenine is being used
as a platform for testing new ideas in writing RDF-manipulating
agents.

5. DATA STORAGE
5.1 RDF Store
Throughout this paper we have emphasized the notion of storing
and describing all metadata in RDF. It is the job of the RDF store
to manage this metadata. We provide two implementations of the
RDF store in Haystack. The first is one built on top of a
conventional relational database utilizing a JDBC interface. We
have adopted HSQL, an in-process JDBC-compatible database
written in Java. However, early experiments showed that for the
small but frequent queries we were performing to render Ozone
user interfaces (e.g., following one or two edges from a node), the
system was slowed by the fixed marshalling and query parsing
costs involved in composing and then decomposing plaintext SQL
queries. (The home page displayed in Figure 1 requires well over
45,000 queries to render.) Switching to a larger scale commercial
database appears to result in worse performance because of the
socket connection layer that is added in the process.

To solve these problems we developed an in-process RDF
database written in C++ (we use JNI to connect it to the rest of our
Java code base). By making it specifically suited to RDF, we were
able to optimize the most heavily used features of the RDF store
while eliminating a lot of the marshalling and parsing costs.
However, we acknowledge this to be a temporary solution, and in
the long term we would prefer to find a database that is well-
suited to the types of small queries that Haystack performs.

5.2 Storing Unstructured Content
It is important for us to address how Haystack interacts with
unstructured data in the existing world. Today, URLs are used to
represent files, documents, images, web pages, newsgroup
messages, and other content accessible on a file system or over the
World Wide Web. The infrastructure for supporting distributed
storage has been highly developed over the past decades. With the
advent of technologies such as XML Namespaces and RDF, a
larger class of identifiers called URIs subsumed URLs. Initially,
RDF provided a means for annotating web content. Web pages,
identified by URL, could be referred to in RDF statements in the
subject field, and this connected the metadata given in RDF to the
content retrievable by the URL. This is a powerful notion because
it makes use of the existing storage infrastructure.

However, with more and more content being described in RDF,
the question naturally arises: why not store content in RDF?
While this is certainly possible by our initial assumption that RDF
can describe anything, we argue this is not the best solution for a
couple of reasons. First, storing content in RDF would be
incompatible with existing infrastructure. Second, leveraging
existing infrastructure is more efficient; in particular, using file
I/O and web protocols to retrieve files is more efficient than using
XML encoding.

Hence, we do not require that existing unstructured content be
stored as RDF. On the contrary, we believe it makes sense to store
some of the user’s unstructured data using existing technology. In
our prototype, we provide storage providers based on HTTP 1.1
and standard file I/O. This means that storing the content of a
resource in Haystack can be performed with HTTP PUT, and
retrieving the content of a resource can be performed with HTTP
GET, analogously to how other resources’ contents (e.g., web
pages) are retrieved. Our ontology uses the Content class and its
derivatives, HTTPContent, FilesystemContent, and LiteralContent
to abstract the storage of unstructured information.

6. FUTURE WORK
Haystack provides a powerful platform for organizing and
manipulating users’ information. In this section we touch upon
two topics we are currently investigating that build new
abstractions on top of the data model discussed above.

6.1 Collaboration
Enabling users to work together, exchange information, and
communicate has become an absolutely essential feature of
modern information management tools. The focus of current off-
the-shelf products has been on e-mail and newsgroup-style
discussions. However, the addition of rich metadata manipulation
facilities creates many possibilities for Haystack in fostering
collaboration.

First, Haystack encourages users to have individualized
ontologies, so converting between these ontologies when
exchanging data will need to be examined. Agents can be
instructed in the relationships between different ontologies and
can perform conversion automatically. As an alternative one can
imagine an ontological search engine that is consulted whenever a
user enters data. This way users end up using the same ontologies
to describe similarly-structured data.

Second, security issues arise when sharing data. Support for belief
networks will need to be expanded to allow users to distinguish
their own information from information obtained from others.

Access control and privacy will need to be examined to allow
users to feel comfortable about storing information in Haystack.

Finally, metadata describing individual users’ preferences towards
certain topics and documents can be used and exchanged to enable
collaborative filtering. Sites such as epinions.com promote user
feedback and subjective analysis of merchandise, publications,
and web sites. Instead of going to a separate site, users’ Haystacks
can aggregate this data and, by utilizing the belief network,
present users with suggestions.

6.2 Customizing Organization Schemes
We have started to investigate the many ways in which people
organize their personal information in physical form, such as
bookcases and piles. We believe that each method of organization
has different advantages and disadvantages in various situations.
In light of this, we propose to support several virtual organization
schemes simultaneously, such that the user can choose the
appropriate organization scheme to use in each situation. Different
schemes act like different lenses on the same corpus of
information. We will provide agents that help the user create and
maintain these organization schemes.

6.3 Customizing Schemata
We are looking to integrate features that allow users to create
ontologies implicitly as they input information into the system.
For example, when manipulating data in a graph display such as a
diagram editor, users are creating terms in an ontology when they
define custom relationships between different nodes in the graph.
There is also a need to be able to associate terms defined by the
user with terms defined by other users. We speculate that agents
will be able to unify terms together in the background once
connections are discovered.

6.4 Customizing User Interfaces
The fact that the user interfaces are themselves described in RDF
means that at some level modifying the user interface can be seen
as a typical metadata manipulation task not that different from,
say, managing a collection. We aim to develop tools that will
make it easy for the user to select and customize the most
effective views for the information with which they work.

7. ACKNOWLEDGEMENTS
This work was supported by the MIT-NTT collaboration, the MIT
Oxygen project, a Packard Foundation fellowship, and IBM. The
authors would like to thank Vineet Sinha for his insight regarding
the ideas discussed in this paper.

8. REFERENCES
[1] Box, D., Ehnebuske, D., Kavivaya, G., et al. SOAP: Simple

Object Access Protocol.
http://msdn.microsoft.com/library/en-
us/dnsoapsp/html/soapspec.asp.

[2] Goland, Y., Whitehead, E., Faizi, A., Carter, S., and Jensen,
D. HTTP Extensions for Distributed Authoring – WEBDAV.
http://asg.web.cmu.edu/rfc/rfc2518.html.

[3] Dourish, P., Edwards, W.K., et al. "Extending Document
Management Systems with User-Specific Active Properties."
ACM Transactions on Information Systems, vol. 18, no. 2,
April 2000, pages 140–170.

[4] Berners-Lee, T., Hendler, J., and Lassila, O. "The Semantic
Web." Scientific American, May 2001.

[5] Christensen, E., Cubera, F., Meredith, G., and Weerawarana,
S. Web Services Description Language (WSDL) 1.1.
http://www.w3.org/TR/wsdl.

[6] Resource Description Framework (RDF) Model and Syntax
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[7] Resource Description Framework (RDF) Schema
Specification. http://www.w3.org/TR/1998/WD-rdf-schema/.

[8] RDF Model Theory. http://www.w3.org/TR/rdf-mt/.

[9] Adar, E., Karger, D.R., and Stein, L. “Haystack: Per-User
Information Environments” in 1999 Conference on
Information and Knowledge Management.

[10] Karger, D and Stein, L. “Haystack: Per-User Information
Environments” , February 21, 1997.

[11] Raskin, J. “The Humane Interface.” Addison-Wesley, 2000.

[12] Berners-Lee, T. Primer: Getting into RDF & Semantic Web
using N3. http://www.w3.org/2000/10/swap/Primer.html.

[13] Dublin Core Metadata Initiative. http://dublincore.org/.

[14] Cutting, D., Karger, D., Pedersen, J., and Tukey, J.
“Scatter/gather: A cluster-based approach to browsing large
document collections.” Proceedings of the 15th Annual
International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 318-329.

