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Abstract

Haystack is a novel personal information management system whose goal is to pro�
vide an intuitive interface to a user�s documents� This thesis describes the author�s
e	orts to advance the system in several directions� First� we analyze the problem of
metadata representation and present a data model based on a directed graph struc�
ture� The data model is highly 
exible in expressing relationships among data� In
the course of this thesis we attempt to de�ne a document and o	er our vision on this
subject� Second� this thesis describes a substantial redesign of the Haystack system�
In particular� we describe the new implementation of the services involved in the
archiving process� Finally� we describe an implementation of a tool that enables the
creation of word�frequency pro�les that the Haystack system can use to adapt to the
user�
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Chapter �

Introduction

Today� anybody who has access to a networked computer will testify to the awesome

amount of available information and the frustration and pain of managing it� Indeed�

�nding a needed document� be it an email message or a web page� is often a time�

consuming� if not an impossible task� A common approach to this problem is the use

of tools that make it possible to search for documents by using key words� However�

this approach is inadequate because people tend to associate documents with meta

information� such as the author or the date� which is ignored or used poorly by most

search tools� In addition� existing document management tools are unable to adapt

to a speci�c user and lack adequate user interfaces�

��� Haystack Project

The Haystack project is an attempt to create a personal document management

system that would address all of the above issues� Haystack utilizes the techniques

already available to computer scientists and also innovates in a number of ways�

The Haystack system is built on top of an Information Retrieval �IR� engine that

allows indexing and searching of textual information� In addition to indexing a user�s

documents� Haystack collects and structures metadata about these documents� The

discovery of an information structure creates an opportunity for novel approaches

to presenting information� Finally� the ability to access a user�s documents and to

�



monitor ways in which these documents are accessed� enables the creation of an

intelligent system that can adapt to the user�

��� Implementation

Haystack project was launched two years ago� and its development proceeded in

several stages� The �rst version of Haystack was implemented in Perl� Although the

initial results were encouraging� Perl proved to be vastly inadequate to the needs of

a large data�oriented system� Consequently� a second version has been implemented

using Java� The new Haystack system has a powerful design that takes full advantage

of Java�s object oriented paradigm�

Haystack Design

One of the strengths of Haystack lies in the data structure used to store information

about documents� This structure consists of a directed graph� in which nodes can

represent both data and relationships between the data� Haystack de�nes its own

notion of a Haystack Document as an aggregation of a document body and metadata�

In the Haystack data graph� the Haystack Document and its body are represented

by di	erent nodes� Once a document becomes part of Haystack� a number of services

take on the task of extracting all useful information from it and fully integrating the

document into Haystack�s data graph�

��� Goals of This Project

At the time when the author joined the Haystack project� substantial parts of the

Haystack design and implementation were completed� However� a number of design

issues remained unresolved and the implementation was not su�ciently robust� Both

of these problems prevented further development of Haystack� The goal of this project

was to address the existing problems and to extend Haystack�s capabilities�

The initial stage of the Haystack design� described by Adar and Asdoorian ��� ��
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laid down the foundation of the Haystack data structure� This framework� also called

the data model� sometimes lacked the speci�city required to enable the cooperation

of multiple services in the system� Many fundamental issues behind the data model

were left unanswered� There were both a practical need and a theoretical interest to

further explore the principles of the data model� In the course of the past few months�

we deepened our understanding of the data model and made the necessary changes

in the code to re
ect this new understanding� This thesis describes these e	orts and

their results� It also discusses the reasoning behind the current data model�

Another major challenge of the project was to enhance the system robustness and

to add new services� Since Haystack needs to manage a large amount of data� the

system requires sophisticated software structures� Some of these structures existed

and some needed to be created� A signi�cant amount of work has been done to

improve the Haystack system� This thesis describes this work and the parts that

were added or signi�cantly modi�ed�

Finally� until recently� Haystack lacked the technology to support adaptation to

users� As a means to tackle this task� we implemented the capability to create word�

frequency pro�les of a single document� a group of documents� or an arbitrary collec�

tion of text data� A word�frequency pro�le is a summary of a document�s contents�

which can be easily manipulated� compared to other pro�les� etc� This thesis pro�

vides a description of the service and the structures that were created to support

word�frequency pro�ling�

��� About This Thesis

Audience

This thesis is primarily intended for two groups of readers� First� it is intended for the

computer science researchers and professionals who want to learn about the Haystack

project and its results� Second� it is designed for the present and future developers

of Haystack� The latter necessitates the inclusion of technical details not normally

found in scienti�c publications�
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The Structure of This Document

In order to accommodate as wide an audience as possible� this thesis provides some

background on information retrieval and metadata storage� Chapter � provides this

information and puts the project into the context of work done by other researchers�

Chapter  introduces the Haystack system� its data model and services� Chapter

� discusses several conceptual issues having to do with the representation of docu�

ments in the Haystack data model� Chapter � reviews the implementation of data

manipulation services in Haystack� followed by Chapter � on the implementation of

word�frequency pro�ling� Chapter � describes a number of internal data structures

and services that are needed to enhance Haystack�s robustness or improve perfor�

mance� Chapter � outlines some of the tasks that lie ahead of Haystack developers

in the near future� Chapter � summarizes and concludes this thesis�

Other Contributors

The work described in this thesis is the result of a collaborative e	ort of many mem�

bers of the Haystack group� in particular� the leader of the group� Professor David

Karger� and the two students responsible for the original design of Haystack� Eytan

Adar and Mark Asdoorian� This thesis builds upon the constructs developed by these

people� In addition� many insights about the data model came as a result of discus�

sions that involved the entire Haystack group� Finally� parts of the implementation

work were a result of collaborative e	orts of Damon Mosk�Aoyama and the author�
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Chapter �

Background and Related Work

The Haystack project borrows its techniques from a number of computer science

�elds� some of which require brief introduction before we can proceed to describe the

Haystack project� Section ����� introduces information retrieval� followed by Section

����� that discusses the notion of metadata and how it is used in Haystack� Finally�

Section ��� reviews related work in the �elds of IR� metadata representation and

knowledge representation�

��� Background

����� Information Retrieval

Information retrieval �IR� refers to retrieving documents or texts with information

content relevant to a user�s information needs� Information retrieval includes two

related� but di	erent activities� indexing and searching� Indexing refers to the way

documents and requests are represented for retrieval purposes� Searching refers to the

way the �les are examined and the items relevant to a search query are extracted� The

two activities of indexing and searching have formed the focus of most of the research

that has been carried out by the IR community� However� there is now increasing

interest in complementary studies of the ways that people use IR systems and how

user�system interactions should be organized to facilitate e	ective retrieval� While
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indexing and searching are central to automated retrieval� they can support other

forms of retrieval� such as browsing� which can also be enhanced by sophisticated

visual presentation�

The Haystack project goes beyond basic indexing and retrieval and focuses on

developing advanced data representation and visualization techniques� Haystack uses

an o	�the�shelf search engine� called ISearch ���� to implement basic indexing and

retrieval� We sometimes refer to this search engine as the �underlying IR system��

Haystack does not rely on any features speci�c to ISearch � so that this search engine

can be easily substituted by another�

����� Metadata and Its Use in Haystack

A key feature of a good document system� such as Haystack� is the ability to represent

information about documents and to express inter�document structure� Information

about documents is calledmetadata� For example� a very important piece of metadata

is the data format in which a document is stored �e�g� Latex� MS Word� plain text��

Other examples of metadata are the document author�s� and the creation date� A

user�s annotation to a document is also considered a piece of metadata� This section

discusses brie
y the use of metadata in Haystack and then reviews related work on

metadata representation�

Metadata can come from a variety of sources� It can be passed along with a

document when the document is archived� It can also be extracted from the document

�e�g� a title of an HTML page can be identi�ed by an appropriate HTML tag�� Finally�

metadata could be generated by the owner of the document� as in the case of the user

attaching a note with comments�

There are at least two ways in which Haystack uses metadata� First� metadata

is used to search for a document� The IR system indexes metadata along with the

text of documents� When a user queries Haystack to �nd a document� the ability to

search metadata augments the user�s ability to identify the desired document and to

�lter out undesirable ones�

The second way in which Haystack uses metadata is to establish relationships
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among the user�s documents� The fact that two documents have the same author im�

plies a relationship between the two documents� and the Haystack data model makes

it possible to capture this relationship� Similarly� if two web pages were visited one

after another� it might be indicative of a connection between the two and this infor�

mation should be recorded� Relations among the documents can also be considered

metadata� The presence of relationships among the documents may be helpful to

many tasks� including browsing the data graph to �nd a desired document�

��� Related Work

����� Metadata Representation

There have been a number of projects that address the use and representation of meta�

data� Most of these projects look at metadata from the point of view of information

�ltering or document transmission over the web�

One of these projects� the Resource Description Framework �RDF� ���� is an e	ort

of the World Wide Web Consortium �WC� to create an infrastructure to enable

encoding� exchange and reuse of structured metadata� RDF is an extension of XML

that creates a syntax that can be used to express metadata about the documents on

the Web� RDF does not de�ne any metadata � instead� it allows interested parties

to create metadata schemas and de�ne metadata semantics�

One of the applications of RDF is the Dublin Core Metadata Element ���� which

de�ned �fteen standard �elds to be used to describe a generic on�line document �e�g�

title� author� language�� The primary objective of the Dublin Core project is to

facilitate discovery of electronic documents on the Web�

There are several key di	erences between how metadata is handled by RDF�Dublin

Core and the Haystack data model� First of all� Haystack does not impose any

schemas on its data model� In other words� Haystack does not limit the kinds of meta�

data that can be associated with a document� Haystack does not have to follow the

formal approach for representing metadata taken by the RDF�Dublin Core because
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Haystack is not concerned with the ability to share metadata with other users� and

distribute it over the Web� The lack of such ability is� of course� a disadvantage��The

upside is that we can a	ord a 
exible and informal data model � word searching does

not require that semantics be de�ned and the human user� when browsing the data

graph� is capable of extracting meaning from di	erent syntactic constructs himself�

While most metadata models aim to allow authors to annotate documents with

metadata for the purpose of document distribution� Haystack is not concerned with

information transfer� Rather� Haystack�s concern is to represent the metadata in a

way that would make browsing the document space as convenient as possible� Hence�

Haystack can a	ord a highly�
exible data model� without being concerned about

standardization�

A number of metadata representation systems target speci�c� goal�oriented kinds

of metadata� An example of such a system is PICS� which stands for the Platform

for Internet Content Selection ���� PICS is an Internet�based technology that gives

Internet users control over the kinds of material to which they and their children have

access� PICS makes it possible to label Internet documents� Labels can provide any

kind of descriptive information about Internet documents� in particular they make it

possible to rate a document according to its appropriateness for viewing by children�

PICS is an information �ltering tool that enables users to �nd documents with

the appropriate content� In this� the goals of PICS represent a subset of the goals of

Haystack� In addition to improving search� in Haystack� metadata creates a linkage

among the documents which provides a way for the user to �nd a document by

browsing the document net�

Another system related to Haystack was developed at the Stanford University

and is called Lore ���� Lore is a database management system speci�cally designed

for managing semi�structured information �i�e� structure is not schema�based�� In

this� Lore�s data model is similar to that of Haystack�

Finally� there are a number of commercial document management systems that

�Note that given a set of metadata� Haystack could use RDF to de�ne an appropriate schema
and distribute it to other users�
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allow a user to annotate and connect related documents �e�g�� ����� Usually� the role

of metadata in these systems is marginal� and a system does not actively seek to

expand the metadata set or use it to create inter�document structure�

����� Information Retrieval

Information Retrieval is relevant to Haystack in two ways� First� Haystack needs

to enable the user to search documents and metadata� To this end� Haystack uses

an external search engine �ISearch� ����� Haystack does not attempt to improve the

performance of an IR system per se� Instead� Haystack tries to make an IR system

more useful to the user by enabling the user to search not only the document itself�

but also metadata�

Traditional IR systems �e�g�� ��� ���� lack the ability to customize their behavior

to a user� Haystack attempts to make up for that weakness by using IR techniques

to implement user customization� This is the second way in which IR is relevant to

Haystack� A number of academic projects attempted� with various degrees of success�

to combine IR techniques with user customization� Stanford University researchers

created a system �� which learned about a user�s preferences by having the user rate

presented web pages� The system could then �nd more web pages of interest to the

user� Another project in this direction was undertaken by a group at UC Irvine �����

The Stanford and UC Irvine systems used the vector�based model� a standard for IR

systems �e�g�� ������ to represent user interests� Haystack takes a similar approach to

representing user interests �see Chapter ��� but is di	erent in that it learns about the

user from observing the documents in her possession and the documents she accesses

on the Web� Note that the role of a Haystack user in the learning process is passive�

unlike that of a user of the Stanford or UC Irvine systems� who is required to be

active in order for a system to learn�
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����� Knowledge Representation

Haystack can be considered a knowledge representation �KR� system� Unlike a general

knowledge representation system� Haystack is primarily interested in knowledge about

documents� Knowledge about non�documents� such as people� can also be represented

in the Haystack data model� but the primary purpose of this knowledge is to serve as

an intermediary in establishing relations among documents�

Although Haystack was not designed to be a pure knowledge representation sys�

tem� classical texts on this �eld describe structures similar to those of the Haystack

data model� For example� Reichgelt ��� describes a semantic net as a graph consist�

ing of nodes and links� Links are unidirectional connections between nodes� Nodes

correspond to objects� or classes of objects� in the world� whereas links correspond to

relationships between these objects� This sounds very similar to what Haystack does�

with nodes and links corresponding to Haystack needles and ties�

One of the major di	erences between the classical KR systems and Haystack

is that these systems deal with data at much �ner granularity than Haystack� A

node in a KR usually represents a small piece of data� whereas in Haystack a large

number of nodes are document bodies� A document� sometimes very large in size�

is an aggregation of a large amount of unstructured data� We feel that �document�

level granularity is appropriate for Haystack due to an end�to�end argument �����

Documents are Haystack�s input as well as its output �Haystack �nds the document

for the user� and the user �nds needed information in the document herself�� Thus�

there is usually no need to arti�cially break up documents into smaller pieces for the

sake of representation��

�There are exceptions to this statement� It might be convenient to break a book into chapters
because excessively large quantities of data are impractical in many respects� including that of
information retrieval� In fact� the issue of the right degree of granularity at which data should be
indexed� represented or returned to the user presents an interesting research topic�
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����� Other Related Work

An interesting project� parts of which are related to Haystack� was conducted by

Sheldon ����� The project creates an architecture for information discovery based on

a hierarchy of content routers that provide both browsing and search services to end

users� The end user is presented with a document space that bears some similarities

to that of Haystack� For example� documents in this system are organized in a tree

structure� There is also an object representing a collection of related documents�

which is something we considered �and rejected � � in the design of the Haystack data

model�

�See Section ��� to �nd out why��
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Chapter �

Introduction to Haystack

This chapter gives a high�level description of the Haystack implementation� The

chapter consists of the following three parts� The �rst part introduces the Haystack

data model� i�e� the structures used to represent documents and other knowledge� This

part is followed by a review of services� i�e� functional components of Haystack� The

last part familiarizes the reader with several features of the Haystack implementation

that fall outside the scope of the �rst two parts but are still needed to understand

the remaining chapters of this thesis�

��� The Data Model

����� The Data Graph and Straws

All information about documents is represented as a directed graph� sometimes re�

ferred to as the Haystack data graph� The nodes in this graph are called straws�

Straws subdivide into three subtypes� needles� ties and bales� A needle represents a

piece of �raw data�� A needle is basically a wrapper around a Java object� such as a

string or a number� A needle can also wrap around a �le� A tie represents a directed

relationship between two straws� For example� if straw A represents a document and

straw B represents the person who wrote that document� an �Author� tie connecting

A and B could be created to represent this relation� The reason that relations are
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Figure ��� Data Graph Example

represented as independent nodes in our data graph is that we might want to point to

or annotate a relation� For example� if a user creates a tie between two documents to

indicate that they are related� he can attach to the tie a String needle with an expla�

nation of why the tie was created� Finally� a bale represents a complex relationship

among multiple straws� For example� a bale can be used to represent a document�

a person or a query� These objects usually comprise several parts� For example a

person object can combine the person�s name� address and the date of birth� A bale

is a centerpiece that connects these parts and represents their aggregation� Needles�

ties and bales are basic constructs that could be used to represent any knowledge�

including knowledge about documents� Note that the pointers that connect the nodes

in the data graph do not carry any semantic information� Instead� if a relationship

needs to be expressed between two straws� a tie is used to connect the straws and

express the nature of the relationship�

Figure �� shows an example of a data graph used to represent information about a

document� In this example� the document is a Master�s thesis stored in LaTEX format�

Each box in the �gure represents a straw� At the top of each box is the primary type
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Figure ��� Data Graph Example with Complete Straw Types

of that straw� and at the bottom is a description of what the straw represents� Note

that the bale representing the document and the needle representing the body of the

document are di	erent entities� The body refers to the actual text of the document�

Besides the body� other information is present about the document� namely� its type

�LaTEX�� title ��Master�s Thesis�� and the author� represented by a person bale�

����� Straw Typing

Every node �straw� in the Haystack data graph must belong to one of the above�

mentioned subtypes� a needle� tie or bale� These subtypes can further subdivide into

sub�subtypes� so that straw types form a hierarchy similar to that of Java types� The

type of a straw is expressed by a string� called a label� Examples of type labels are

�Bale�� �Tie�Author� and �Needle�HayFile�Text�� The supertypes of a straw type

can be derived from its label� For example� a straw labeled �Needle�HayFile�Text� is

a subtype of �Needle�HayFile�� which in turn is a subtype of �Needle�� Each straw

has a type label� The label is a �nal authority on the type of that straw� In the

remainder of this thesis we will use the terms �label� and �type� interchangeably�
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Figure �� shows the same graph as in the previous example ����� except that

the straw types are speci�ed completely�

����� Straw Subtypes� Needles� Ties and Bales

Needles and Ties

In example �� the needles represent �raw data� and the corresponding ties express

the signi�cance of the needles� To illustrate this distinction� consider the needle on

the right containing the string �Master�s Thesis�� Its role in this graph is to express

the title of the document� We could imagine a second document� a very short one�

that consists of only two words� �Master�s Thesis�� The very same needle could serve

as a body of that second document and be connected by a �Tie�Body� tie to the

second document�

By having needles and ties� we can represent �raw data� and signi�cance of data

separately� Nothing about a needle should ever express the signi�cance of the data

in it� The needle label indicates the nature of the Java object encapsulated by the

needle� The tie label indicates the type of relationship �signi�cance� expressed by the

tie�

In light of the above� I would like to explain a writing convention that might

be confusing to the reader� We demonstrate it using the example in �gure ��� In

that example� we may sometimes write about the �Needle�HayFile� �middle at the

bottom� as the �body needle�� The word �body� in this phrase is used to identify a

needle by its signi�cance in the context of the document bale� Use of the term �body

needle� should not be interpreted as an expression of some inherent property of that

needle�

There is no prede�ned set of tie labels and a user can create ties with arbitrary

labels� The only important thing about a tie label is that the party that creates a tie

and the party that uses the tie have to agree on the meaning of the label�

The fact that the Haystack data model allows the user to create a data graph of

an arbitrary structure sets the Haystack data model apart from the data model of a
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relational database� in which a schema precludes a user from dynamically changing

the structure used to connect the data �tables��

Immutability of Needles A needle encapsulates a piece of data �a Java object��

Once a needle is created� the data may not be changed� The reason for this restriction�

called needle immutability� is that Haystack might create other straws that point to

the needle� or whose data is derived from the data in the needle� If we change the

data in the needle� other straws or pointers might become incorrect� We choose not

to change the data under the pointers�

Needle Uniqueness All needles in Haystack are unique� in that there are no two

needles that encapsulate two identical Java objects� There are two reasons why needle

uniqueness is desirable� First� Haystack strives to discover all possible relations among

the elements of the data graph� If two needles have the same data� this implies a

relation between the two� Of course� we could create a tie between them� but merging

the two needles is even a simpler solution� For example� if two documents have the

same title� the documents would be connected through the needle encapsulating the

string with the title�

The second reason for needle uniqueness is the conservation of space� Although

it might not matter for needles of small size� it would de�nitely be wasteful to store

two large �le needles with identical data�

Note that if for some reason Haystack did not merge two identical needles� that

would not break Haystack or its data model� Needle uniqueness is a nice feature

to have� Without it Haystack would still function� although its usefulness would be

reduced�

Bales

We defer the general discussion of bales until the next chapter� However� there is

one feature of bales representing documents that we must introduce now� If a bale

represents a document� it must attach a �Tie�DocType� tie leading to a needle that
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expresses the format in which the document body is encoded� e�g� Postscript� The

DocType is an important piece of a document�s metadata� The signi�cance of the

DocType will become apparent as this thesis progresses�

��� Services

The functional part of Haystack is implemented by services� A service is a functional

Java class with a clearly de�ned set of duties� A service can either run at all times�

or can be called in temporarily when needed� There are over a hundred services in

Haystack that carry on a variety of duties� ranging from archiving and processing

documents� to indexing and searching the data graph� to helping other services�

The services are bootstrapped by a module called the HaystackRootServer� This

module is responsible for initializing� running and stopping services� We refer the

reader to the Appendix A�� of ��� for an in�depth discussion of the HaystackRoot�

Server�

The goal of this section is to familiarize the reader with the services that will be

relevant in the course of this thesis� It is not our goal to provide a comprehensive

review of services on Haystack� Such a review can be found in ���� The three main

groups of services that we consider in this section are�

Data manipulation services archive documents� extract information from them�

and put these data into the Haystack data graph�

Information processing services extract information from documents and create

structures that could be used for user interface tasks� The services create word�

frequency pro�les� index �les for searching� etc� Unlike the services in the

previous category� information processing services do not modify the data graph�

System services assist other services in their duties� carry out a variety of system

tasks �e�g� interacting with the database�� manage the Haystack �le repository�

etc�
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Other major groups of services in Haystack are the interface� observer and com�

munication services� Interface services are responsible for the user interface� At

the present time three user interfaces are available� web based� windows�based �im�

plemented in Swing� and command�line� Observer services track the user�s web

browser� SMTP mail client and other gateways to actively archive user documents�

Communication services are responsible for inter�Virtual Machine and and inter�

Haystack communication� These parts of Haystack functionality fall outside the scope

of this thesis�

Before we proceed to describe services in greater detail� it is worth mentioning

that Haystack outsources some functionality to database management and IR sys�

tems� Haystack employs a database management module to persistently store its

data� Haystack also uses an o	�the�shelf IR system to index and search textual data�

����� Data Manipulation Services

Services in this group are responsible for creation and manipulation of the Haystack

data graph� The following services comprise the group�

The Archive service coordinates the process in which a document becomes part of

Haystack� e�g� creates a document bale and attaches needles with the metadata�

Fetch services fetch the body of a document given a location� For example� a URL

fetch service obtains the �le speci�ed by a URL�

The Type Guesser service determines the type of a document �e�g� Postscript�

when the document is archived�

Extractor services extract data from documents that contain or point to other

documents� For example� a Gzip extractor uncompresses Gzip documents and

makes the decompressed �le a part of Haystack�

Field�Finder services extract information from archived documents� For example�

a Latex �eld��nder extracts the title� the author and other metadata from a

Latex document and attach appropriate needles to the document bale�
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Texti�er services extract text from formatted documents� For example� the HTML

texti�er gets rid of the formatting information in an HTML document �tags��

The process of extracting text from a document is called texti�cation� When a

texti�er service completes its work� the extracted text is placed into a needle

which is attached to the document bale�

Similarity services identify similar documents� For example� the Similar Text ser�

vice identi�es documents with nearly identical text and connects the two doc�

ument bales with an appropriate tie�

Many data manipulation services work by reacting to changes in the data graph�

A service can indicate that it is interested in a change of a certain kind� When that

change occurs� an appropriate event is generated� A dispatcher service� called Hs�

Dispatcher� noti�es interested data manipulation services of the event� which triggers

the services to execute� For example� an HTML �eld��nder service wants to be called

when a bale is created for an HTML document� At the time of initialization the

HTML �eld��nder service speci�es a structure� called a star graph� that expresses

the pattern in the data graph that should trigger the service� This star graph is

then passed to the dispatcher service� The dispatcher service keeps track of changes

made to the data graph and� in the event that a pattern expressed by the star graph

emerges� noti�es the HTML �eld��nder of this event�

Data manipulation services may create chain reactions� in which addition of straws

to the data graph by one service triggers other services to run� The chain reaction

stops when all possible information is extracted and this information is put in the

data graph�

Example� Data Manipulation Services in Action

The work of data manipulation services is best illustrated in action� Thus� we will

describe a sequence of actions that Haystack takes upon a user�s request to archive

a document� Although this description does not include all of the data manipulation

services� it should be of interest to the user in its own right because much of what
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is described in this thesis was meant to improve the process below in one way or

another�

In this example we describe what happens when a user issues a request to archive

an HTML document at a speci�ed URL�

�� The archiving service is given a URL location of a document� the Archiving

service calls the URL fetch service to obtain the body of the HTML document�

�� The Type Guesser service is called to determine the type of the fetched docu�

ment� Based on the ��html� extension in the URL� the type guesser determines

the type to be �HTML��

� The archiving services creates a bale to represent the document� and attaches

metadata needles �location� document type� to the bale�

�� An HTML �eld��nder service reacts to the creation of a bale with document

type �HTML�� The �eld��nder extracts metadata from the body of the HTML

document �title� author�� puts the metadata into needles and attaches these

needles to the document bale�

�� An HTML texti�er service reacts to the creation of a bale with document type

�HTML�� The service removes HTML tags from the body of the document� puts

the result into a needle and attaches the needle to the document bale using an

appropriate tie�

����� Information Processing Services

Information processing services extract information from documents for specialized

purposes� but do not make changes to the data graph� The information extracted by

the services could be used for a variety of tasks� such as searching and customizing

the user interface�

The Index Service indexes the text of documents and metadata with the underly�

ing IR system� This operation makes it possible to subsequently query the IR

system�





The HsPro�ler Service creates word�frequency pro�les of documents� It can also

create a variety of custom pro�les� e�g� a pro�le of all documents� The word�

frequency pro�les can by used for searching the documents and for other tasks�

����� System Services

System services help all other services carry out their duties� They also provide

low�level management of the straw database� Below are some of the system services�

The Object Creator Service facilitates the creation of straws and ensures that

various Haystack invariants are observed� For example� the service ensures

needle uniqueness by verifying that no two identical needles are created�

The Persistent Object Service interacts with the underlying database to persis�

tently store the data graph� The service also loads straws in memory when

needed�

The Hayloft Management Service helps other services manage the directory that

serves as Haystack�s persistent data repository� This directory is called the

Hayloft�

The Resource Control Service enables concurrency control� It provides other

services with a mechanism to lock resources to prevent race conditions�

��� Other Implementation Features

Promises and HaystackFile

In theory� Haystack aims to manage a very large amount of data� Very often Haystack

has to maintain several slightly di	erent copies of the same piece of data �e�g�� a

body of a Gzipped �original� Postscript document� a decompressed version of the

same document� and a version that has been texti�ed�� Instead of storing a piece of

data� Haystack can use an object called a promise� that contains information on how

to obtain that piece of data� For example� instead of storing an on�line document
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internally� we can store a promise that contains the URL of that document� When

the data in the promise is needed� the promise is ful�lled� and the data is returned�

In order to abstract a piece of data regardless of whether it is stored internally or

can be obtained from a promise� Haystack implements a structure called HaystackFile�

A HaystackFile might contain either a local �le with the data� or a promise� The

HaystackFile is transparent to its possessor in that the behavior is identical in both

cases� Section ��� talks about promises and HaystackFile in detail�

Haystack IDs

In order to uniquely identify objects in Haystack� a service exists that can generate

unique IDs� called HaystackIDs� Thus� all straws and promises have unique IDs�
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Chapter �

Discussion of the Data Model

Section �� of the previous chapter gave an overview of the data model� This chapter

provides an in�depth discussion of several important issues of the Haystack data

model�

Haystack is a document management system� and the goal of its data model is to

represent documents in a way that would enable the user to browse and search for the

documents in the most e�cient and intuitive manner� To this end� Haystack�s data

model makes it possible to express metadata and relations among documents� all of

which create structure among the Haystack documents� Needles� Ties and Bales are

the basic constructs that� in theory� allow us to build any knowledge system� In this

chapter� we try to understand how the knowledge about documents can be expressed

using these three types of Straws�

We begin by outlining some desired criteria for the Haystack data model in Section

���� We also give a sample list of objects that we might want to represent in Haystack�

Since documents are the most important objects in our system� they receive a lot of

attention in this chapter� Speci�cally� in Section ��� we discuss what a document is

and why a document is represented by a bale� Then� in Section �� we talk about

another important class of objects � collections� and whether they deserve a special

representation� There� we also discuss the di	erence between the relationships of

containment and reference� Finally� in Section ��� we take another look at a bale as

an encoding of a complex relationship�
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��� Goals of the Data Model

Anything that is not a primitive type or a bilateral relation� is represented as a bale�

Unlike needles and ties� bales are very general constructs and it is not obvious exactly

how bales represent objects� To answer this question� we need to set out reasonable

expectations of the kinds of objects that we might want to represent in Haystack�

Below is a list of seven items that are representative of the objects we might want to

represent in Haystack�

� Text document

� HTML page The key feature of an HTML document is that in addition to the

text of its own� the document contains links to other documents�

� Book A large structured on�line document that can be physically represented in

many ways � as a number of �les with an index �le referencing the �les that

contain the parts �chapters�� as one large �le� etc� An interesting feature of a

book is that it represents a document� and at the same time its parts �chapters�

are signi�cant enough to be considered documents on their own�

� Tar archive Files of this type are created by a program called tar�� The purpose

of this program is to group other �les in one �le� Normally� tar �les are not

expected to be viewed directly� archived documents must be extracted before

they can be used�

� Directory A directory contains references to other �les� It may be argued that a

directory contains these �les� but this depends on the de�nition of containment�

� Query This object represents the event of a user querying some knowledge base

�e�g� web search query�� The two key parts of a query object are the query

itself �presumably a string� and the set of objects returned as a result of the

�Tar stands for Tape Archive� For more information about tar see
http���www�gnu�org�software�tar�tar�html
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query� A query must be represented in the Haystack data model because a lot

of useful information could be derived from it�

� Person Having a representation of a person is useful because people author doc�

uments� Also� a person is an example of an object that is not a document and

it is important that the Haystack data model be 
exible enough to represent

objects that are not documents��

��� Representing Documents

Documents are the most important objects represented in the Haystack data model�

This section discusses documents and the way they should be represented� First� we

need to de�ne what we mean by the word �document�� Once this is done� we explain

why bales and not needles are chosen to represent documents�

����� What Is a Document�

The word �document� can be de�ned in many ways� Webster�s dictionary de�nes a

document as �a writing conveying information� or �a material substance having on

it a representation of the thoughts of men by means of some conventional mark or

symbol��

The Dublin Core workshop de�ned document�like objects �DLOs� by example� Ac�

cording to Weibel ����� an electronic version of a newspaper article or a dictionary is

considered a DLO� whereas an unannoteted collection of slides is not� While acknowl�

edging that DLOs might include all kinds of media �images� audio�� Weibel says that

�the intellectual content of a DLO is primarily text� and that the metadata required

for describing DLOs will bear a strong resemblance to the metadata that describes

traditional printed texts��

�Haystack does not attempt to mimic the real world� However� many relationships among the
documents are derived from real world objects� and Haystack should be able to represent these
objects as well� to the degree that this representation enables the expression of relationships among
the documents�
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We de�ne a �real�world� document very broadly� a document is a representation

or encoding of information� A document can originate in the real world � in a printed

form� or in the electronic world � in the form of a �le� In either case� before it can

enter Haystack� the document must be represented as a computer �le� called the body

of the document�

This de�nition is far from rigorous � in fact� the term document is usually un�

derstood from examples� rather than from de�nitions� Of the examples on page ��

the �rst �ve items are considered documents � a plain text� an HTML page� a book�

a tar archive and a directory� The reason that a directory is considered a document

is that somewhere inside the operating system it is represented by a �le �at least in

many operating systems��

The key property of a document is that either a document body exists� or it

is conceivable that such body could exist �directory�� A person is not a document

because a person could not be wholly represented by a computer �le� Nor is a query

considered a document� because a query� which we de�ne as an aggregation of a query

string and its results� is not a �le� Note that under our de�nition of a document� it

is moot for a document to have multiple bodies�

There are a lot of questions about the exact meaning of the word �document��

� Suppose that we have the same �document� saved as an MS Word and HTML

�les� Should these two �les be considered to store the same document�

� Suppose that we have two copies of the same book� A reader wrote his comments

on the pages of one book� the other has pages torn out� Should these two books

be considered the same document�

There are no �right� answers to these questions and we will not try to answer them�

The important questions for Haystack are� ��� how to represent a document and ���

once a representation is chosen� what exactly does it represent�
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����� Why a Document Is Represented by a Bale�

Haystack Document

So far we have explored what we call a document in the �real world�� In this subsec�

tion we write about the representation of documents in Haystack� What we represent

in Haystack is somewhat di	erent from the real world document � we call it a

Haystack Document �HD�� We de�ne a Haystack Document as an aggregation of

the document body and the metadata�

We must pick an object in the Haystack data model to represent a Haystack

Document� The object representing a Haystack Document would attach straws rep�

resenting the metadata� There are two candidates for the job � the needle that stores

the document�s body or a bale�

Why the Body Needle Cannot Represent the Haystack Document

In theory� a Haystack Document could be represented by a needle wrapping around

the �le containing the body of the document� After all� each real world document

has a body� and is de�ned by this body� However� this needle cannot serve as such a

representation for the following reasons�

� Haystack does not need to possess a document�s body to represent the

document� There are two situations in which we want to have a representation

of a document without having the actual body�

� We might know about a document whose body might be unavailable� For

example� we might have a citation of a book� with its author� title� pub�

lisher� etc�� yet not have the book itself� The fact that the body of the

book is not currently available should not preclude us from representing

the book�

� It might be conceivable that a a body exists or could be created� yet

Haystack does not possess it� For example� consider a directory� A di�

rectory could be represented as a �le as it is the case in the Windows
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operating system� or if the directory is fetched through a web server� At

the same time� Java I�O does not allow the programmer to obtain the body

of the directory � the programmer should use Java methods to query the

operating system about the contents of a directory� To deny a directory a

status of a document in this case would mean that a representation of a

directory depends on the particulars of the computer system� which should

be irrelevant to the question of whether a directory is a document or not�

Since a document body is not always present� and we want our representation

to be consistent among the documents with and without a body� it is impossible

to always represent a document as a needle�

� A needle could not possibly represent a document because it is nothing but

�raw bits�� A needle that contains a string �My Thesis� could be the body of

one document and the title of another� Since needles are unique it would be

extremely confusing if the needle represented a document and a title at the same

time� In fact� metadata could not be attached to the needle directly� because

the metadata is only relevant to the body in the context of the document�

Thus� the needle that contains a Haystack Document�s body cannot represent the

Haystack Document� Moreover� no other metadata needle can represent a Haystack

Document for the similar reasons�

Having ruled out needles� a bale is left as the only plausible representation of a

Haystack Document� In fact� a bale is a good representation because it was designed

to represent a complex relationship and that is what Haystack Document is � it is

an aggregation of the document body and the metadata�

Implications

The fact that a Haystack Document represents an aggregation of a body and metadata

implies that there can be two di	erent Haystack documents whose bodies are iden�

tical� Although not common� this is a plausible situation� It is conceivable that two

people independently create two documents with the same text� To re
ect the reality
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accurately� Haystack should have di	erent representations �two di	erent document

bales� for these two di	erent real life objects�

Finally� we answer the two questions that were left unanswered at the end of the

previous section� except that now we talk about a Haystack Document instead of a

real world document�

� If we have the same �document� saved as an MS Word and HTML �les� these

would be archived separately� and represented with di	erent Haystack Docu�

ment bales� The two �les correspond to two Haystack Documents because at

least one of the pieces of their metadata is di	erent � the DocType� Note that

if the SimilarText service is running� it would see that the texti�ed versions of

the two documents are �nearly� identical and would create a �Tie�SimilarText�

between the two bales�

� If there are two copies of the same book and a reader wrote his comments on

the pages of one book� and some pages are torn out in the other� we would

also have to create two di	erent Haystack Document bales� Their bodies are

slightly di	erent �pages missing� and the second book has metadata �the reader�s

comments� that the �rst one does not� Again� most likely� a connection between

the two books would have to be established eventually � by a SimilarText

service� through a common Author needle� or in some other way�

We were able to answer these questions because semantically� a Haystack Document

is closer to a copy of a document than to a document� Haystack can deal with this

because storing �an extra copy� is cheap� and we hope the human user would �gure

out in which piece of information she is interested�

Immutability of Documents

Once a document bale is created� and a body needle is attached� this body may not

be detached or replaced by another one� When a body needle is attached� Haystack

services react to this event by creating additional straws based on the body of the

document� For example� once a body of a Postscript �le is created� an appropriate
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texti�er service creates and attaches to the bale a needle that contains the text of the

body� If the original body disappears or changes�� the new straws might no longer be

correct� Since it is virtually impossible to determine which straws became incorrect�

a body needle may not be detached or replaced�

In fact� the above argument applies not only to the body needle� but also to

the DocType� location and other metadata needles� If any of these de�ning needles

change� the Haystack Document would no longer be the same� The question then

arises� what shall we do if one of the de�ning needles needs to change� Unfortunately�

Haystack does not currently deal well with such mutations �but might be able to in

the future��

A standard solution to the �mutation� problem is to create a completely di	erent

bale� By doing this� we introduce redundancy but avoid creating an incorrect data

structure� Haystack relies on the user to ultimately decide which piece of data she

wants to use�

For example� consider the following situation� Suppose a user archives a revision

of a document� that is already represented in Haystack� Even if the user is not

interested in keeping the body of the original revision� we would have to create a new

document bale for the new revision� Of course� a tie should be created between the

original document and the revision indicating the relationship between the two�

��� Collections

Another class of objects that could possibly warrant a special representation is that

of collections� Among the examples given on page �� a tar archive� a directory and

an HTML document can be considered collections� a tar archive has associated with

it a collection of �les that it includes� a directory has associated with it a collection of

�les that it contains� and an HTML page has associated with it a collection of URLs

to which it points�

�Due to needle immutability� the body could only change if the original body needle was replaced
by another one�
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While some of the examples listed above are commonly viewed as collections�

HTML documents can be considered unusual� The reason for this is that a tar archive

contains its parts� while an HTML document only points to other documents� We

feel that while there is a distinction between containment and pointing �see Section

���� for a discussion of that�� there are many commonalities � enough to say that

URLs linked from an HTML page comprise a collection�

It is important to understand that under a broad de�nition collections are not

limited to a few speci�c types of �les� Any large amount of data must be organized to

facilitate access� All data is grouped into collections �although sometimes implicitly�

and might belong to more than one collection� Collections might be based on a variety

principles� For example� data is grouped by the area of knowledge �chapters in the

book�� by ownership �all documents on a company web site� or by relevance to a

speci�c person�object �links from personal home page��

Thus� a great variety of documents have the potential to be considered collections�

What makes tar �les and directories special is that the collection relationship has been

the explicit purpose of the document� This argues that collection relationship among

the parts should be stronger than in �implicit� collections� However� we feel that this

di	erence has so far been insu�cient to warrant an augmentation of the data model�

Thinking about collections led us to two other interesting questions� The �rst

question is that of de�ning containment and reference� The second is that of whether

one bale can express multiple relationships� We will now address these two question

in turn�

����� Containment vs� Reference

The question of what constitutes containment and what constitutes referencing �or

pointing� is interesting for two reasons� First� it comes up in the discussion of collec�

tions� And second� the answer is needed to label ties appropriately �if distinction is

to be made in the Haystack data model��

Containment and pointing are not clearly de�ned with regard to many instances

encountered in real life� For example� a �le system directory is often viewed to contain
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a �le� unless it is a symbolic link� in which case� the relationship is considered pointing�

Another example might be a book on�line� If a book is saved as a number of �les

representing chapters� and an index �le points to the chapters� we say that the book

points to its chapters� On the other hand� if an entire book is stored in a one large

�le� the �le is said to contain the chapters�

The two examples above present at least two reasons to argue for no distinction

between containment and pointing�

� The �rst example �directory� shows that containment and pointing are not

clearly de�ned themselves with regard to many instances occurring in real life�

While we can elaborate their corresponding de�nitions� this would require us to

go into great technical detail�

� The second example �the book� draws our attention to the following problem� A

single piece of knowledge �a book� can be viewed to have di	erent relationships

among its parts depending on the way it is stored in a computer system� a

book can be stored ��� as one large �le that contains the chapters� or ��� as

an index �le that points to the �les that store the chapters� In both cases�

conceptually� we are dealing with the same object � the book� However� it

seems that the technical details of how the books are stored a	ect the way in

which the book�s internal structure is viewed �containment or pointing�� We

feel that a data model must represent knowledge unambiguously� which means

that di	erent representations of the same book must be conceptually identical�

The only way to achieve this is to view containment as equivalent to reference�

Despite the reasons above not to make the distinction� Haystack continues to use

�Contains� and �References� ties according to the following intuitive de�nition of

these terms� A document A is said to contain document B� if the body of B could

be obtained from processing the body of A �e�g�� decompressing�� Everything else is

called referencing�
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Figure ���� The Current Way of Representing Relationships

��� How Bales Express Relationships

The purpose of a Bale in the Haystack data model is to represent a multilateral

relationship among straws� For example� consider a bale that represents an HTML

document� In this example� we can talk about a relationship among all the documents

linked from the HTML page� We can say that all of these documents are in the

�referenced together� relationship� Similarly� for a tar archive� we could say that

all documents extracted from the archive are united by a �common containment�

relationship�

For an HTML or a tar document bale� the common reference or common con�

tainment relationship seems very signi�cant� During the design of the data model

we considered creating a separate bale that would link all of the documents pointed

to or contained in one particular document� Figures ��� and ��� show possible rep�

resentations of a Tar archive� Figure ��� shows the current representation� Figure

��� depicts an alternative representation where one bale represents the tar document�

and another bale represents a collection of documents contained in the tar archive�

We rejected this alternative representation for two main reasons�
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� The biggest reason for using a separate straw is the ability to point to it� For

example� a tie requires a separate straw because sometimes we want to point to

a relationship among two other straws� not at either of the straws themselves�

In the example of a collection� the relationship of a collection is so closely tied

to the document relationship that it is unlikely that someone would need to

distinguish between the two�

� Unless somebody wants to point to the collection speci�cally� both represen�

tations are isomorphic in that one can be derived from another� For example�

given representation ���� one can infer that all documents pointed to by the

�Tie�Contains� tie are in the collection relationship� Since both representations

are equivalent functionally� and representation ��� is more complex� we choose

representation ����

� Consider a paper that has multiple authors� We could say that these people

de�ne a �common authorship� collection� We could also talk about a collection

of queries that match this document� etc� If we were to adopt representation

���� we would have to create bales for all �common ���� relationships or draw

the line somewhere� The latter solution would make our data model explode in

size without adding any real bene�t� It would also mean special treatment for

certain relationships which is undesirable�

The last argument illuminates the following point� If in a bale several ties of the

same type are present� we can always talk about a sub�relationship among the straws

pointed to by the ties of the same type� A bale can be said to represent one complex

relationship� or to represent a number of simpler relationships� Although we could

create a data model in which one bale would correspond to exactly one relationship�

we refrain from doing so to avoid a complex data model and because under the current

data model it is still possible to derive the simple relationships�
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Chapter �

Data Manipulation Services

This chapter describes the implementation of the data manipulation services and of

the dispatcher that coordinates the work of these services� Data manipulation services

are responsible for creating and modifying the Haystack data graph� The reader

might remember from Chapter  that many data manipulation services are run in

response to the events in the data model� We begin this chapter by describing the

Haystack event model and its implementation in Section ���� After the mechanisms

controlling the data manipulation services are understood� Section ��� describes the

archiving service which coordinates the process in which a document becomes a part

of Haystack� This process is called the archiving process� Next� Section �� reviews the

data manipulation services that are involved in the processing of information inside

the documents� We take a closer look at the extractor services to give the reader a

deeper understanding of how the data manipulation services interact with the data

model� The last Section� ���� describes the implementation details of the archiving

service�
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��� Event�Driven Services and Dispatching

	���� Overview

Haystack uses event dispatching to enable data manipulation services to react to

changes in the Haystack data graph� Haystack implements its own event dispatching

because Java event dispatching lacks 
exibility required to support our needs� The

events are dispatched by the HsDispatcherService� Once an event occurs� the dis�

patcher service identi�es services that are interested in this event and puts them in

the queue for running� The dispatcher has under its control several threads that are

used to run the services in the queue� Services use a structure called the star graph

to indicate their interests to the dispatcher�

Events

Haystack implements two main kinds of events � Haystack events and Object events�

� Haystack events occur when two straws are connected with a tie �HaystackCre�

ateEvent�� or when straws previously connected are disconnected

�HaystackChangeEvent�� HaystackChangeEvent is not presently used �i�e� events

of this type are not thrown and no service is interested in this event��

� Object events occur when straws are created� deleted or changed� At the present

time� none of the Object events are being used�

Thus� the only event presently used is HaystackCreateEvent� This event occurs when

a tie is created to point from one straw� called the source straw to another� called the

target straw�

	���� Star Graph

The reason for having event�based services �as opposed to call�based� is the following�

When a straw is added to the Haystack data structure� it is possible that further

information can be obtained from that straw� It is also possible that the appearance
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of a straw may signal that information may be extracted from another straw� For

example� if a needle containing an HTML document is created� we know that certain

information �e�g� the title� can be extracted from the body needle� In this example�

the HTML �eld��nder service would be interested to know that such a needle has been

added� There is a large number of services that might be interested in these types

of events� Under these circumstances� an event�based model leads to a conceptually

clear code model and easier application design� In particular� under the event�driven

model� services are independent in that they do not need to know about each other�

A service needs to tell the dispatcher that the service wants to be triggered in

response to a certain change in the Haystack data graph� This is done by specifying

a star graph of interest� A star graph is an abstraction that describes a small piece

of the data graph� A general form of the star graph is the following�

Straw Root of type R
Tie of type T� connecting straw Root to straw of type S�

Tie of type T� connecting straw Root to straw of type S�

���
Tie of type Tn connecting straw Root to straw of type Sn

For example� consider the following star graph�

Straw Root of type �Bale�
Tie of type �Tie�Body� connecting straw Root to straw of type �Needle�HayFile�
Tie of type �Tie�DocType� connecting straw Root to straw of type

�Needle�HayMIMEData�HTML�

An HTML �eld��nder service would use this star graph to indicate its interests

to the dispatcher� When the �eld��nder passes the star graph in the example to the

dispatcher� it says� �Inform me when the following con�guration is created in the

straw graph� a Bale that has a body of type �Needle�HayFile� and a document type

of �Needle�HayMIMEData�HTML��

Note that each ray of a star graph consists of exactly one ftie� strawg pair� In other

words� a ray can not be �tie X� connecting straw Y� connecting tie X� connecting

straw Y�� �two pairs�� The reasons that a star graph does not have more than one
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ftie� strawg pair are that ��� there was never a need for that� and ��� supporting rays

with multiple pairs would signi�cantly complicate the implementation�

	���� How Dispatching is Done

When Haystack is initialized� all services inform the dispatcher about their interests

by registering appropriate star graphs with the dispatcher� When the con�guration

of the data graph changes� the dispatcher determines whether the changed con�gu�

ration matches any of the star graphs� Speci�cally� when the HsDispatcher service is

informed that a HaystackCreateEvent has occurred� it determines whether the source

straw and its out�coming ties �t any star graph�

For each star graph sg with root R� the dispatcher does the following� The dis�

patcher examines whether the source straw�has type R� For each tie�straw pair �Ti� Si�

in the star graph sg� the dispatcher examines whether the source straw has a tie of

type Ti leading to a straw of type Si� If all of these test results are positive� the

service whose interest is expressed by the star graph sg is scheduled for execution�

Note� that when the �eld��nder is interested in Bales with bodies of type �Nee�

dle�HayFile�� it is also interested in bales with bodies of type �Needle�HayFile�Text��

The methods used to match a data graph with the star graphs need to be aware of

this� These two methods are implemented inside of the StarGraph class��The imple�

mentation of the star graph is fairly complicated� and the programmer needs to be

extra careful when modifying that code�

	���� Running Triggered Services

After the dispatcher determines which services are interested in the event� it places the

fService� Eventg pairs into a queue for execution� The dispatcher has at its disposal

�Note that the dispatcher only looks at the star graph of the source straw and not at the star
graph of the target straw�

�Until recently star graph matching had been done using the ORO package� which implemented
regular expression matching� For a number of reasons we had to stop using ORO and matching
had to be re	implemented using Java
s String methods� The new implementation turned out to be
simpler and also more e�cient�
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a pool of several threads which it uses to run the services scheduled for execution�

In order to avoid synchronization problems� no two services working on two events

with the same source straws should be executed at the same time� In other words�

if services A and B are in the queue to handle events that share a source straw� the

dispatcher must wait until service A is done� before running service B��

��� The Archiving Process

The process of making an outside document a part of Haystack may be abstracted

into two steps�

�� Obtain the body of the document �e�g�� fetch a �le from a URL location�

�� Create appropriate structures in the data graph to signify the document and

the metadata� In particular�

� Create the document bale�

� Try to determine the document type �e�g� Postscript��

� Attach all the metadata existing about the document at the moment �in

the form of needles�� including the document type� to the document bale�

The process outlined above is called the archiving process� Another way to de�ne

it is� steps that Haystack must take immediately after a request to make a document�

a part of Haystack�

There are several possible scenarios in which an archiving process may be initiated�

� By a user� when he issues a request to the GUI to archive a �le at a speci�ed

location�

� By a service� A service can learn about the existence of an outside document

by analyzing a document already in Haystack �e�g�� a directory that has already

�Note that when we say �running service x in response to the event y of type HaystackCre	
ateEvent we mean calling method handleHaystackCreateEvent of the class x with argument y�

�By �document here� we mean a �real world document as discussed in Section �����
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been archived� and a service that decides to archive �les in the directory�� Alter�

natively� an observer service �see Section ��� can decide to archive a document

�e�g�� a web page browsed by the user��

Also� it is possible that a service already has the body of a document� but needs to

perform step two to complete the archiving process�

	���� Archiving Service

A service called HsArchive is responsible for coordinating the archiving process�� The

HsArchive service is not a very large piece of code� However� this service is crucial to

ensuring that the data graph is created in accordance with the rules of the Haystack

data model�

In order to archive a document� a user must specify its location� At the present

time there is only one kind of location � a URL location � other kinds of locations

are not foreseen in the immediate future� Thus� from now on we will assume that

location is represented by a URL� Note that a URL can specify either a remote

document� or a local �le �using the ��le� protocol�� Also� the reader should keep

in mind that it is possible to archive a document that does not have a body �for

example� a directory��

There are two main methods in the class HsArchive� called archive and createBale�

These two methods implement steps one and two of the archiving process outlined at

the beginning of this section� The archive method obtains the body of a document�

and then calls the createBale method to create a bale and attach metadata straws

to it� Note that the method createBale can be called by any service that needs to

create a bale�

The implementation of the archive and createBale methods is relatively low�

level� compared to the rest of this section� In order to preserve the high level of

discourse� we defer the description of the implementation of these two methods until

�Other services can bypass HsArchive and create all the structures required for a new document�
However� it is preferable that HsArchive be used for this task� Archiving a document can at times
be tricky and it is better if this job is done by a �professional service rather than an �amateur�
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the end of this chapter �Section �������

	���� Type Guessing

As discussed brie
y in Section ���� each document bale must attach a DocType nee�

dle� The DocType needle �e�g� the needle attached by the �Tie�DocType�� indicates

the format of the document represented by the bale� Examples of DocType needles

are �Needle�HayMIMEData�Postscript� and �Needle�HayMIMEData�Directory�� A

special DocType �Needle�HayMIMEData�Unknown� is used to indicate that the bale

represents a document whose type Haystack was not able to determine�

The DocType of an archived document is determined by a service called HsType�

Guesser� The �guesser� part in the name of the service indicates the degree of un�

certainty associated with the process of determining the type of a document� This

process is uncertain by nature because Haystack can not possibly know about all the

computer formats� However� the type guesser attempts to determine some of the

well�known formats as follows�

� If a URL location needle is present� the type guesser extracts the �le part of the

URL and� if the the �le extension is present tries to determine the type based

on that �e�g� ��ps� extension means Postscript��

� If a �lename needle is present� the type guesser again looks at the type extension�

� When the body of the document is obtained through negotiations with a Web

server� the server often informs the client about the nature of the data being

transmitted �e�g� �HTML��� These data� called the MIME content type� is only

present in �les that have been obtained through the Web or by email� If this is

the case with the document in question� the type guesser uses the content type

to determine the DocType�

� Finally� the type guesser has the ability to determine the DocType by looking

at the body of the document� However� such capabilities are not implemented

at the present time�
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The type guesser tries all four of the above methods�� and assigns the appropriate

DocType if at least one succeeds� If none of the methods succeed� the DocType

�Unknown� is assigned to the bale�

The reason that we would rather have an �Unknown� DocType than no DocType

at all is that some services might be able to extract data from a document of an

�Unknown� type �e�g� a texti�er service could use the �strings� command from the

Unix operating system to extract text data from a �le of an arbitrary type�� If

a DocType tie is missing� a service cannot determine which is true� ��� the type

guesser has not run yet� or ��� the type guesser cannot determine the document type�

There are two alternatives as to how and when the type guesser can be run� First�

it can be done the way it is implemented right now� createBale method calls the

type guesser unless the DocType is already present� Second� the type guesser could be

event�driven� i�e� the type guesser could trigger each time a new �piece of evidence�

is added to the data graph� body� location� �lename or the content type� We choose

the �rst alternative for the following reasons�

� Since each document bale must have a DocType needle� calling the type guesser

in the createBale method ensures that the rule is observed�

� It is possible that neither body� location� �letype nor content type ever become

available� An event�driven type guesser cannot anticipate whether an �evi�

dence� will be forthcoming� and will never be forced to assign an �Unknown�

type�

� In practice� all four pieces of �evidence� exist by the time createBale is called�

Thus� there is no reason to wait with calling the type guesser�

It has been argued that the user should be able to alter the DocType manually

if he disagrees with the decision of the type guesser� This is problematic due to the

issue of document immutability� discussed at the end of Section ������

�If methods in the type guesser disagree on the answer� the type guesser picks the answer provided
by the most �credible method� The order of �credibility is the following� based on body� based
on content type� based on the �lename� based on the location�
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The last issue that needs clari�cation is what happens if we want to create a

document bale� but we have neither the body of the document� nor its location� nor

the �lename� nor the content type� If this is the case� the caller of the createBale

method can either pass the DocType among the straws to attach� or pass nothing� in

which case DocType �Unknown� would be assigned to the document�

��� Data Processing Services

Data Processing services include �eld��nders� texti�ers and extractors� Below is a

list of existing data processing services�

Field�Finder Services extract information from archived documents� mostly meta�
data � the title� the author� etc� At the present time� �eld��nder services for
the following document formats are available or being worked on�

� Latex

� HTML

Texti�er Services extract text from formatted documents� At the present time�
texti�er services for the following document formats are available or being
worked on�

� ASCII �dummy texti�er�

� Dvips

� HTML

� Latex

� Postscript

Extractor Services extract data from documents that contain or point to other
documents� Extraction here is de�ned broadly� and does not imply that ex�
tracted documents are contained in the parent document� Thus� although a
directory references� rather than contains its �les� the service that archives �les
in a directory is called an extractor� At the present time� extractor services for
the following document formats are available or being worked on�

� BABYL �Emacs mail�

� Directory

� Gzip compressed document
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� UU Encoded

� Tar archive

Although a signi�cant number of changes were made to the code of all of these

services� many of these changes were done to comply with modi�cations in other parts

of Haystack� There were no signi�cant changes in the way �eld��nder and texti�ers

work� Since the work of �eld��nders and texti�ers was described well by Asdoorian

and Adar ��� ��� it is not necessary here to repeat these descriptions� However� it

would be bene�cial to review the work of extractors for the following reasons� First�

extractors were virtually non�existent at the time when Adar and Asdoorian wrote

their theses� Second� many of the changes made to Haystack in the past half a year

were inspired by the problems with the implementation of extractors� These problems

stem mainly from the di�culties of interaction between the services and the data

graph� By examining the extractor services here� we can illustrate the interaction

between the services and the data graph� and prove that the current data and service

models are� in fact� workable�

Thus� in the remainder of this section� we present two extractor services� Directory

and Tar� which we believe to be representative of other extractors� Please note that

in the description of the extractors� we talk about promises and HaystackFiles� If the

reader feels that the introduction to these constructs in Section � was not su�cient�

he is welcome to read section ��� that gives an in�depth explanation of promises and

HaystackFile�

	���� Directory Extractor

The directory extractor is an event�driven service that listens for the creation of a bale

with a DocType tie leading to a needle labeled �Needle�HayMIMEData�Directory��

and �Tie�Location� tie leading to a needle labeled �Needle�HayURL�� When the star

graph of interest is created� the method handleHaystackCreateEvent is called� The

following is the sequence of actions taken by this method�

�� Obtain the URL of the directory from the needle that triggered the service�
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�� Get a list of �les in this directory using the Java I�O package�

� For each �le in the directory� do the following�

�a� If the �le is a symbolic link� do nothing�

�b� If the �le is not a symbolic link� call the archive method of the archiving

service� passing the URL of the �le as the only argument�

�c� The archive method returns the HaystackID of the bale created for the

new document� Using the Persistent Storage Service� get a pointer to the

bale by its HaystackID�

�d� Attach the bale of the new document to the bale representing the directory

by the tie of type �Tie�References��

Note that this sequence of actions assumes the successful completion of each stage�

The reader should realize that the sequence above is only a framework of what the

Directory extractor does� We can �ne tune the service by creating rules of when the

�les in a directory should be extracted recursively� whether we might want to archive

some �les and not others� etc�

	���� Tar Extractor

Tar archive extractor is an event�driven service that listens for the creation of a bale

with a DocType tie leading to a needle labeled �Needle�HayMIMEData�Tar�� and

a body tie leading to a needle labeled �Needle�HayFile�� When the star graph of

interest is created� method handleHaystackCreateEvent is called� The following is

the sequence of actions taken by this method�

�� Obtain the HaystackFile from the needle that triggered the service�

�� Run �tar �t� which outputs a list of �les in the archive� Parse the output of the

command to produce a vector of �le names�

� For each of the �le names do the following�
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�a� Create a promise that would extract the �le with that �le name from

the HaystackFile containing the archive� Create a HaystackFile from that

promise�

�b� Create two vectors� archiveTieLabels and archiveStraws that will hold

the data to be passed to the archiving service�

�c� Create a needle with the HaystackFile that has just been created� Add the

needle to the vector archiveStraws� Also� add the label �Tie�Filename�

to the vector archiveTieLabels�

�d� Create a needle for the �le name string� Add the needle to the vector

archiveStraws� Also� add label �Tie�Body� to the vector archiveTieLabels�

�e� Call the archive method of the archiving service� passing to it two vectors�

archiveStraws and archiveTieLabels� The archive method creates a

bale for the extracted document� and returns the HaystackID of the bale�

�f� Using HsPersistentStorageService� get a pointer to the Bale by its HaystackID�

�g� Attach the bale of the new document to the bale representing the tar

archive by the tie of type �Tie�Contains��

Again� this sequence of actions assumes the successful completion of each stage�

In step �a� we created a promise to extract a Tar �le and then we ful�lled that

promise in step �b�� Note that the actual extraction is done in the promise�

��� Implementation Details

	���� Archive and Create Bale Methods

This section complements Section ��� by describing the implementation of the archive

and createBale methods�

Archive Method

The archive method has the following signature�
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public HaystackID archive� URL loc�

Vector tieLabels�

Vector straws�

ArchiveOptions options�

HaystackUI theUI �

throws ArchiveException

� loc is the URL location of the document to be archived

� tieLabels is the Vector of tie labels with which to attach straws

� straws is the Vector of straws to attach to the new document�

� options is the Archive Options object to direct the archiving process

� theUI is the User Interface �UI� to query for user input �a dummy UI is passed
if the user is not involved in the archiving process��

This method is implemented using the following steps�

�� Make sure that neither body nor location are present in the straws vector�

�� Check whether the location loc has been archived before� If it has� use the GUI

to ask the user whether to proceed�

� Create a URL needle� Add it to the straws vector� and add �Tie�Location� to

the tieLabels vector�

�� If the URL has a ��le� protocol �e�g�� ��le����projects�thesis�almostdone��� see

if the speci�ed location is a directory�

� If it is� we know the document type and we know that body is not needed�

Thus� we create �Needle�HayMIMEData�Directory� needle and add it to

the straws vector� also adding �Tie�DocType� to the tieLabels vector�

� If the speci�ed location is a regular �le� create a URL fetch promise for that

location and create a HaystackFile from that promise� Put the Haystack�

File into a �Needle�HayFile� needle� Add the needle to the straws vector

and add �Tie�Body� to the tieLabels vector�
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�� If the URL has a protocol other than ��le�� e�g� �http�� create a URL fetch

promise and create a HaystackFile from that promise� Put the HaystackFile

into a �Needle�HayFile� needle and add the needle to the straws vector� also

adding �Tie�Body� to the tieLabels vector�

�� Call the createBale method passing vectors straws and tieLabels to it�

Auxiliary archive method Often� there are no straws to be attached to the new

bale and the default archiving options and UI are to be used� As a matter of con�

venience� another archive method exists overloading the �main� archive method�

The auxiliary archive method takes only one argument � the location� It then calls

the �main� methods� passing empty vectors in place of straws and tieLabels� and

default ArchiveOptions and UI in place of the options and theUI arguments�

Create Bale Method

The method has the following signature�

public HaystackIDs archive� Vector tieLabels�

Vector straws�

throws ArchiveException

� tieLabels is the Vector of tie labels with which to attach straws

� straws is the Vector of straws to attach to the new document

Note that the elements of straws and tieLabels vectors should be in direct

correspondence� i�e� the ith straw in the straws vector should be attached with the

tie whose label is the ith element of the tieLabels vector� The following is done by

the createBale method�

�� Create a new bale�

�This might not be the cleanest way to pass ftie� strawg pairs to the method� but it is by far the
simplest in terms of implementation�
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�� Create a needle with the current time and attach it to the bale using a �Tie�CreationDate�

tie�

� Attach all straws from the straws vector to the bale using ties with the labels

speci�ed in the tieLabels vector�

�� If a �Tie�DocType� tie is not in the vector tieLabels �i�e� the DocType is

unknown�� run the type guesser and attach the result with a �Tie�DocType� tie

to the bale� If the type guesser fails to determine the type� the type �Unknown�

is used� �see next Section �������

�� The HaystackID of the bale is returned to the caller�

An ArchiveException is thrown if vectors straws and tieLabels have di	erent sizes�

There are two advantages to a process in which �rst� all the needles to be attached

to the bale are created� and then� all of them are attached� The more obvious ad�

vantage is that this adds to the conceptual simplicity of the code� The less obvious

advantage is that we do not attach needles until we are sure that all other operations

completed successfully� adding to the robustness of the process� If needles were at�

tached one by one� and a failure occurred in the middle of the archiving process� we

would be left with a structure that is partially complete yet missing some important

components� which is undesirable�

What the second part of the previous passage was essentially saying is that we

want bale creation to have the properties of a transaction� In other words� we either

want a complete bale or nothing� In general having transaction capabilities could

be very useful in Haystack� However� given that ��� nothing terrible would happen

to Haystack if an operation� such as bale creation� is only partially complete� and

��� transactions are expensive and non�trivial to implement� it remains to be seen

whether Haystack would ever employ transaction mechanisms�
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Chapter �

Pro�ling

Per�user customization has been a cornerstone of Haystack since inception� As part

of these e	orts� Haystack needs a means of expressing user interests and document

relevance to these interests� These needs are addressed by using word�frequency

pro�les� a standard solution to these kinds of problems� A package of utilities has

been implemented in Haystack to allow the computing and storing of word�frequency

pro�les� We begin this chapter by discussing the theory behind pro�ling in Section

���� The rest of the chapter describes the implementation of pro�ling in Haystack�

The reader can refer to Section ����� in the chapter on future work for the examples

of how pro�les can be used�

��� Theory Behind Pro	ling

In order to evaluate the relevance of a document to user interests� we need to �nd a

way to express these interests� Haystack makes an assumption that a user�s personal

�les �and the documents she accesses on the Web� re
ect on the interests of the user

�e�g� a doctor will have many medicine�related �les�� Thus� a user�s interests can be

induced from the collection of her documents�

We need a way to express the contents of a document or a collection of documents

to compare them to the contents of other documents� Information Retrieval relies

heavily on the assumption that documents with similar contents use similar words�
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i�e� same words will occur in both documents with a similar distribution of frequencies�

To represent the contents of a document� we can compute its count�le� i�e� a histogram

of words and their frequencies in the document� Similarly� by computing a count�le of

a collection of documents� we can hope to express the contents of the entire collection�

The simplest way to measure the similarity between two count�les is to compute

their dot product�

P
wi�W

f��w�f��w�

whereW is the set of all words that occur in both documents� and fi�w� is the number

of times word w occurred in document i� If this formula is used� count�les with few

common words would produce few non�zero summation terms� whereas count�les with

many common words would have many non�zero terms� and produce a larger result�

Of course� there are many ways to improve the e	ectiveness of that formula� e�g� by

normalizing� Since the details of the dot product formula may vary depending on the

intended use� we will leave these details out of the discussion�

There are many ways to represent the contents of a document� the count�le being

one of them� Depending on the intended use� a count�le may be modi�ed �reduced

in size� frequencies slightly changed� to improve its e	ectiveness for the task� We call

such a modi�ed version of the count�le a word�frequency pro�le� or simply a pro�le�

Haystack computes pro�les which are di	erent from count�les due to the use of

two standard IR techniques� called stemming and stop word elimination�

Stemming Stemming is the process of removing pre�xes and su�xes from words�

This is done to group words that have the same conceptual meaning� such as

�walk�� �walked�� �walker�� and �walking�� Stemming maps such words to a

common stem� which gives us two bene�ts�

�� If two documents use di	erent forms of the same word� we would still be

able to take that into account�

�� Stemming reduces the size of pro�les� which makes storage and computa�

tion more e�cient�

��



Haystack uses a freely available implementation of a Porter stemmer� which is

a well�known algorithm for this task� Note that using stemmers is not without

dangers� For example� a stemmer could mistake the last two letters of the word

�number� for a su�x� and map �number� �incorrectly� to stem �numb�� which

would equate two semantically di	erent words �number� and �numb��

Stopword Elimination A stopword is a word� such as a preposition or an article�

that has little semantic content� A stopword can also refer to a word that has a

high frequency across a collection� Since stopwords appear in many documents�

and are thus not helpful for distinguishing documents� these terms are usually

removed from the pro�le� This procedure is called stop word elimination� Some

systems have a predetermined list of stopwords� However� stopwords can also

depend on context� For example� the word �computer� would probably be

a stopword in a collection of computer science journal articles� but not in a

collection of articles from Consumer Reports�

One of the goals of my thesis project was to implement the basic capabilities

needed for computing pro�les of individual documents as well as pro�les of groups of

documents �or any collection of text for that matter�� The rest of this chapter de�

scribes how this was implemented� Section ��� describes how pro�les are represented

in Haystack� Next� Section �� discusses how pro�les are computed� The last Section

��� reviews the pro�ling service that provides an interface for for dealing with pro�les

in Haystack�

��� Representing Pro	les

A word�frequency pro�le is nothing more than a table that associates words with

integer frequencies� However storing words as strings is ine�cient� Alternatively�

strings can be mapped to integer IDs and the pro�le can be a mapping of word IDs

to frequencies� This solution is used in Haystack� The Pro�le class serves as a pro�le

abstraction and the WordIDMap class is used for translation of words into IDs and
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vice versa�


���� The Pro�le Class

In addition to the mapping of IDs to frequencies� each Pro�le contains a string� called

the info string� that can serve as a description of the pro�le� The following is the

main constructor for class Pro�le�

public Profile�int t��� int f��� String info�

� The array of integers t �t for Token IDs� should contain the word IDs in in�

creasing order� The ordering is used to make operations on pro�les take linear

time�

� The array of integers f should contain the frequencies corresponding to the word

IDs in the array t�

� String info should contain a description of the pro�le�

The most important method of class Pro�le is called addMultiply� The method has

the following signature�

public void addMultiply�Profile prof� int factor�

addMultiply adds pro�le prof multiplied by factor to this pro�le� where this

is the pro�le on which the method is called� The ability to multiply by a factor

allows for great 
exibility in manipulating the pro�les� For example one pro�le can

be subtracted from another if the factor is negative� Note that a frequency can be

negative to express the �irrelevance� of a word�
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���� The WordIDMap Class

This class represents a one�to�one mapping of words to integers� It is used to assign

integer IDs to words because using integers is much more e�cient than using strings�

� The two main methods are getID and getString� The �rst method translates

a word into an ID� while the second does the opposite� If an ID is requested for

a word that is not in the map� a new ID is created transparently to the caller

and that ID is returned�

� Once a mapping from a word to an ID has been created� the mapping can

neither be altered not removed�

� Mapping in both directions takes constant time�

��� Computing Pro	les

The Pro�lingTools class is responsible for the actual computing of pro�les� The three

main methods of this class are�

public static Profile computeProfile�HaystackFile hfile� WordIDMap map�

throws IOException

public static Profile computeProfile�String str� WordIDMap map�

throws IOException

private static Profile computeProfile�Reader in� WordIDMap map�

throws IOException

These methods can compute pro�les of a HaystackFile with text data� a String and

a Reader stream with text data respectively� Each method accepts a WordIDMap�

used to translate words into IDs� The map is updated if a method encounters a word
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that is not in the map� Computing a pro�le takes n log�n� time� the bottleneck being

the Quick Sort needed to put the Word IDs in order�

Pro�lingTools are capable of eliminating stopwords and stemming� Stop�word

elimination is done using a list of words obtained from ����� the list is �� words long�

For stemming we use a freeware implementation of the con
ation algorithm described

by Porter �����

��� Pro	ling Service and Utilities

Pro�le creation and management is controlled by the pro�ling service� implemented

by the class HsPro�lingService� The pro�ling service can compute two kinds of pro�les

� generic and needle�

Generic Pro�les A generic pro�le is identi�ed by a unique string key� We choose

to use a string key instead of a numeric key �such as a HaystackID� because we want

the key to be able to carry semantic information as well �in other words� we want

to be able to name pro�les�� Pro�ling service can support an arbitrary number of

pro�les� A generic pro�le in Haystack can combine�

� Texti�ed document bodies �stored in �Needle�HayFile�Text� needles��

� Arbitrary text data �stored either as a String or a HayFile needle��

Thus� the pro�ling service implements the following methods for dealing with generic

pro�les�

� void addStringToProfile�String str� String key� int factor�

Adds String str to the pro�le speci�ed by the key� The string�s pro�le is

multiplied by the factor factor before being added to the pro�le� If no pro�le

is associated with the given key� a new pro�le is created that is associated with

that key�

� void addNeedleToProfile�HayFile needle� String key� int factor�

throws LabelException
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Adds a text �le needle to the pro�le speci�ed by the key� The needle�s pro�le

is multiplied by the factor factor before being added to the generic pro�le�

If no pro�le is associated with the given key� a new pro�le is created that is

associated with the key� Note that the HaystackFile encapsulated by the needle

is passed to the method� not the needle itself�

� private Profile getProfile�String key�

Returns the pro�le associated with the given key� If no such pro�le exists�

returns null�

� public boolean discardProfile�String key�

Removes the pro�le associated with the given key from persistent storage�

Needle Pro�les Creating a pro�le of a document is a more expensive operation

than combining two pro�les and it is preferable that a pro�le of a document be

computed only once and then cached� To this end� there is a special kind of a pro�le�

called the needle pro�le that contains a pro�le of a HayFile needle with text data

�which takes care of all the large document bodies�� Needle pro�les are computed

for needles of type �Needle�HayFile�Text�� This pro�le is computed transparently

to the user� by calling a getNeedleProfile method� When the method is issued

for the �rst time� the pro�le is computed and returned to the caller� Needle pro�les

are permanently stored� so that on a subsequent call to getNeedleProfile Haystack

does not need to recompute it� A needle pro�le is identi�ed by the needle�s Haystack

ID�

The same map is used for all pro�les� When the pro�ling service is initialized� it

reads the WordIDMap from disk �if one exists�� On shutdown� the pro�ling service

checks if any new words have been added to the WordIDMap� and if so� it saves the

modi�ed WordIDMap to disk��

�WordIDMap is always saved before a modi�ed pro�le is saved� This is to make sure that
a Haystack failure would not result in a pro�le on disk that uses a word ID that is not in the
WordIDMap�
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���� Storing Pro�les

All pro�le related information is stored in the directory ��HAYLOFT�pro�les�� where

��HAYLOFT� is the location of the Hayloft� Haystack�s permanent repository� The

pro�le directory has two subdirectories� one for needle and the other for user pro�les�

Initially we considered storing pro�les of needles as a part of the Haystack data

model� i�e� representing a pro�le as a straw of some kind� We rejected this idea for

the following reason� A pro�le is not something a user will ever want to look at�

Rather� it is a system object� Adding an unnecessary piece of data to the Haystack

data graph would clutter information presentation and would make it harder for the

user to navigate the graph�


���� Viewing Pro�les

Two methods are available for viewing a Pro�le object inside Haystack� Method

printWordProfile of the Pro�le class takes a single argument� a WordIDMap object�

and prints the pro�le to the standard output� printSortedWordProfile does the

same thing except that the words in the pro�le are sorted in the order of increasing

frequency�

For debugging purposes pro�les can be viewed from outside the Haystack as well�

The ViewProfile command �haystack�bin�ViewProfile� takes two arguments�

word�id�map and profile� The �rst argument speci�es the name of the �le con�

taining the WordIDMap �presently� ��HAYLOFT�pro�ler�WordIDMap��� and the

second the name of the �le containing the pro�le� One can easily �gure out the

�le name of the pro�le of interest by browsing the ��HAYLOFT�pro�ler� directory�

ViewPro�le outputs the pro�le with its elements sorted by frequency�
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Chapter �

System Design

This chapter reviews the last several pieces of system design that have been added

or changed in the course of my project� Section ��� describes promises and the

promise cache service� It also covers the HaystackFile construct that abstracts away

a di	erence between a promise and a �le� Section ��� talks about three important

system services that deal with Hayloft management� concurrency control and straw

object creation� This is followed by a discussion of the straw typing implementation

in Section ��� The contents of this chapter are a bit scattered because we wanted

to leave the implementation details until the end� we did not want to mix them with

the more conceptual discussion in the previous chapters�


�� Promises and Haystack File

Computer users today have to deal with large amounts of data� which includes both

their own �les and the �les available on�line� In order to manage all of these data�

Haystack must store internally a large number of �les� In fact� the amount of such

data becomes prohibitive when one takes into account the following facts�

� Due to sophisticated data formats a large percentage of �les have sizes of several

megabytes�
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� For each document� Haystack often needs to maintain several �les �e�g� tex�

ti�ed version� or might need to create additional documents �e�g� documents

extracted from an archive��

� While the number of personal �les is limited by the amount of persistent storage

�i�e� hard�drive� available to the user� the number of �les available on the Web

is virtually in�nite�

Often� �les managed by Haystack are readily available �e�g on the Web� or Haystack

knows how to obtain these �les �e�g� Haystack can easily extract a �le from an

archive�� Given this and the limitations on the amount of data Haystack can store in�

ternally� it becomes desirable be able to store not a �le itself� but an object expressing

the knowledge of how to obtain that �le�

����� Promises

In order to provide this faculty� Haystack uses a structure called a promise� A promise

is normally a small object that stores information on how to obtain a speci�c piece

of data� When the data is needed� a method called fulfill is called on the promise�

and the data is returned�

It is only useful to create promises for large pieces of data� Thus� we do not have

a promise that returns a String or an integer�

A promise is implemented as an abstract class �src�haystack�object�Promise�java��

Any class extending Promise must implement method fulfill that returns an InputStream

with the data� or null if the promise could not be ful�lled� In addition� the Promise

class provides a method that� given a �le name� writes the data of the promise in that

�le�

Each promise has a HaystackID associated with it� The capability to uniquely

identify a promise is used by the HsCacheService �see section ������

There are many classes extending the Promise class� There are promises that

fetch �les from the web� promises that extract �les from archives or compressed �les�

promises that textify� etc� Often� a service that is supposed to do something �e�g�
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textify� only creates an appropriate promise� and it is the class implementing the

promise that actually does the job �e�g� texti�cation��

����� Haystack File

If Haystack has a piece of data� it can either store a �le with this data� or a promise

that returns the data when ful�lled� Note that promise ful�llment results in an

InputStream� which� when serialized to disk� becomes a �le� Thus� a promise can be

viewed as a substitute for a �le� It is desirable to have an object that looks like a

regular �le� yet may have a promise inside it�

Such an object exists and it is called a HaystackFile� A HaystackFile can ei�

ther store a �le or a promise inside it� Speci�cally� a HaystackFile can store a

java�io�File object� As the reader may know� java�io�File is essentially a �le

name and does not have read or write methods� When the programmer wants to read

the data from the java�io�File� she creates an InputStream from the File object�

and the InputStream can then be read� Similarly� HaystackFile does not have a read

method� but has method getInputStream that returns an InputStream with the

data� Besides java�io�InputStream� the user can also request a

java�io�RandomAccessFile using the getRandomAccessFile method�

Promises are read�only by nature� Since HaystackFile wraps around a real �le or

a promise� a HaystackFile is always read�only� HaystackFile returns only read�only

objects� InputStream is read�only by de�nition� and RandomAccessFile is created

with a read�only option�

Sometimes� there are many ways to obtain a piece of data� The same �le can be

stored in multiple locations on the Web� for example locations x and y� For the sake

of robustness the user might want to create a HaystackFile that would �rst attempt

to fetch the �le from location x� and if that is not successful� attempt to fetch it

from location y� In order to implement this� HaystackFile stores an array of promises�

When the user requests data from the HaystackFile� Haystack attempts to ful�ll all

the promises in that array� As soon as one promise is ful�lled successfully� the data

is returned�
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A constructor for a HaystackFile takes either a java�io�File or a

haystack�object�Promise� If the programmer has created a HaystackFile with a

promise and wishes to add an additional promise to it� the addPromise method is

used��

HaystackFile Veri�cation

It is not uncommon that a promise fails �e�g� when an object speci�ed by a fetch

promise is moved or deleted�� When a promise is unful�llable� it is preferable to

determine that as soon as possible� When a promise is passed to the Haystack�

File constructor� the program �rst veri�es that a valid InputStream can be ob�

tained from the promise� If promise ful�llment fails� the constructor throws an

InvalidDataException�� Similarly� a java�io�File object may specify a �le name

of a non�existing �le� but HaystackFile constructor veri�es that this is not the case�

Verifying the input to the HaystackFile might have positive repercussions on the

performance� A HaystackFile often becomes the data of a HayFile needle� If the

data in the HaystackFile is invalid� creation of this needle triggers services that are

certain to fail� This results in wasted system resources �time� risk of resources not

being available to other services�� Verifying the input to the HaystackFile prevents

this waste�

A possible disadvantage of veri�cation is that veri�cation itself is an unnecessary

waste of resources �we have to ful�ll a promise�� However� in reality the data of

the HaystackFile is almost always requested shortly after the HaystackFile has been

created and with the promise cache �described below� it is not such a big waste�

����� Promise Cache

It is very common that the data of the same HaystackFile is requested several times

over a short period of time� If the HaystackFile contains a promise� this promise must

�Note that normally it does not make sense to add a promise to a HaystackFile that stores a
java�io�File because presumably such a �le can be accessed reliably

�Unfortunately� this veri�cation does not protect from the case that a �le that the promise
depends on becomes unavailable in the future �e�g� web site with the �le in question is shut down��
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be ful�lled each time the data is requested� Ful�lling a promise for a large �le might

be costly in terms of processor time� memory and I�O resources� In order to improve

e�ciency� the results of promises can be cached�

HaystackFile uses a service called HsCacheService to cache the data of the promises�

Remember that each promise has a HaystackID and this ID can be used as a key for a

promise in the cache� Promise caching works as follows� When the data is requested

from the HaystackFile and the HaystackFile needs to ful�ll a promise� it �rst checks

whether the data of the promise is currently available from the cache� If this is the

case� HaystackFile obtains these data from the cache and returns it to whomever

requested it� If the data is not in the cache� HaystackFile ful�lls the promise and

passes the result to the cache service� Then HaystackFile returns the requested data�

There are two reasons why caching is done by a special service instead of Haystack�

File itself� The �rst reason is that maintaining a cache is a complicated task �cache

needs to be cleaned up every now and then� etc� � and it is preferable to have a special

service responsible for it� The second reason is that the way the cache is designed� it

can potentially be used by parties other than HaystackFile to store temporary �les

for a controlled period of time�

Implementation of HsCacheService

When a �le is placed into the cache� it remains there as long as it is being used by

somebody� If a �le has not been used for a certain period of time �FILE TIMEOUT��

the �le is removed from the cache� Note that the cache service does not have the

ability to determine directly whether a �le is still being used� Upon request for a

�le� HsCacheService creates an InputStream or RandomAccessFile object and then

returns this object� The receiver of the InputStream may use it for a split second and

then discard the object� or may keep it for the lifetime of the Haystack process� For

a long time this technical di�culty precluded us from implementing a cache� Finally�

a solution was found that uses java�io�FileDescriptor�

A FileDescriptor is an opaque handle to the underlying machine�speci�c struc�

ture representing an open �le or an open socket� A FileDescriptor has a method
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that tells whether it is valid ��le is open� or invalid ��le has been closed�� Both

FileInputStream and RandomAccessFile have FileDescriptors inside them� When

the HsCacheService creates an InputStream or a RandomAccessFile� it retains the

FileDescriptor of that object� After an InputStream object has been used� Java

closes the stream� and the corresponding FileDescriptor becomes invalid� Each time

the HsCacheService does a cleanup� it checks all FileDescriptors in its possession

for validity� When all FileDescriptors for a particular �le become invalid� the cache

service knows that the �le is no longer in use��

Java speci�cations do not provide an excessive amount of documentation for

FileDescriptors� For this reason� it is recommended that FileDescriptors not be abused

by the programmer �e�g� cloned or used to create other objects� lest the cache service

might stop working properly� The only piece of code that needs to use the FileDescrip�

tor is the HsCacheService� Other services should avoid using FileDescriptors of the

objects that might have come from the promise cache�


�� System Services

����� Hayloft Management Service

Haystack uses a directory called the Hayloft to store its persistent data� Some services

create subdirectories in Hayloft and manage their �les there� Often� a service needs to

create a temporary �le or directory� or store a �le permanently in Haystack� A service

called the HsHayloftManagementService helps other services manage these tasks�

The Hayloft management service maintains a temporary directory in Hayloft that

can be used to create temporary �les and directories� The following methods provide

these capabilities�

� public String createTemporaryDir��

�When an InputStreamReader is created from a FileInputStream� the InputStreamReader has
the same FileDescriptor as the FileInputStream�
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This method creates a new temporary subdirectory in Hayloft� One of the uses

of this method is by the extractor services that need a temporary directory

to which to extract �les� The temporary directory disappears on Haystack�s

shutdown� The method returns the absolute pathname of the new directory� or

null in case of failure�

� public String getNewTemporaryFileName��

This method returns a �le name that could be used to create a new temporary

�le� The �lename is guaranteed to be unique for the current Haystack session�

It is also guaranteed that a �le with this �le name does not currently exist� The

�le is destroyed at the end of Haystack session�

� public RandomAccessFile getNewTemporaryRandomAccessFile��

This method creates a new �le in the Haystack temporary directory� The �le

is created with read�and�write permissions� This �le is destroyed on Haystack�s

shutdown� Returns the �le handle to the new �le� or null if creation fails�

There are two ways in which Haystack can �possess� a �le� The �rst is by having

a promise� i�e� knowing a way to get the �le� Promises are normally used for �les

stored remotely� or �les that can be obtained by applying some method to another

�le �e�g� extraction�� The second way is to store a �le permanently inside Hayloft� i�e�

save the �le internally� This process is called shelving� Hayloft management services

provide two utilities for shelving �les�

� public HaystackFile shelve�InputStream in�

This method saves data in the InputStream permanently in Hayloft� The

method returns a HaystackFile object for this �le in case of success� or null

in case of failure�

� public HaystackFile shelve�Promise promise�

This method takes a promise and saves its data permanently into some �le

in Hayloft� The method returns a HaystackFile object for this �le in case of
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success� or null in case of failure� Shelving a promise guarantees that its data

will always be accessible in the future�

Shelved �les are assigned arbitrary unique names and stored in the ArchivedFiles

directory inside the Hayloft� We might move to a more sophisticated directory struc�

ture in the future because ��� we might run into limits on the number of �les in a

directory� and ��� a directory with a large number of �les takes a long time to access�

����� Resource Control Service

Haystack is a fairly large system� and there are many instances when a programmer

has to worry about the possibility of race conditions� Besides� Haystack essentially

implements its own database system where synchronization is always a concern� To

deal with this problem� the programmer can use HsResourceControlService which

provides locking mechanisms by objects�

HsResourceControlService provides a capability to obtain and release exclusive

locks� A lock is identi�ed either by a string� or by a Straw object�� The following

methods provide capabilities to obtain�release a single lock�

public void lockResource�String resource�

public void unlockResource�String resource�

public void lockResource�Straw resource�

public void unlockResource�Straw resource�

Very often a service might need to obtain several locks� In order to avoid the possibil�

ity of a deadlock� the locks should always be obtained and released in the same order�

In order to facilitate this� several methods are available in HsResourceControlService�

Although these methods are nothing but syntactic sugar� it is highly recommended

that they be used to make sure that locking occurs in the right order�

�Which is mapped uniquely onto a string�
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public void lockResources�String n�� String n	�

public void unlockResources�String n�� String n	�

public void lockResources�String n�� String n	� String n
�

public void unlockResources�String n�� String n	� String n
�

public void lockResources�Straw r�� Straw r	�

public void unlockResources�Straw r�� Straw r	�

public void lockResources�Straw r�� Straw r	� Straw r
�

public void unlockResources�Straw r�� Straw r	� Straw r
�

����� Object Creator Service

HsObjectCreatorService is responsible for the creation and permanent storage of

Straw objects� Due to the existence of various kinds of Straws� as well as the need

to enforce several data invariants� HsObjectCreatorService has grown to a signi�cant

degree of sophistication� This subsection will describe the changes made recently to

support needle and straw label immutability�

Immutability Issues

Until recently� data in needles could be modi�ed� After it was decided that data

in needles should be immutable� we needed a way to enforce this� Speci�cally� the

setData method had to be removed and needle data had to be speci�ed at creation

time� In order to accommodate this� creation methods of the HsObjectCreatorService

had to be rewritten�

Similarly� when labels were introduced in all straws� and it was decided that labels

should be immutable� creation methods had to be modi�ed� In addition� we had to
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ensure that the type of the data passed to a needle corresponded to one of the existing

needle types� This condition could be checked either at run or compile time� For the

sake of early error detection� we do the checking at compile time� To this end� separate

methods were created� one for each type of Needle� that explicitly state the type of

needle data in their signature�

Straw Creation Methods

As a result of all of the above considerations� the following methods had been imple�

mented in the object creator service�

� public Tie newTie�String label� throws LabelException

Creates a new tie with the speci�ed label� Throws LabelException if the label

is not a legal tie label �an example of an illegal tie label is �Bale���

� public Bale newBale�String label� throws LabelException

Creates a new bale with the speci�ed label� Throws LabelException if the

label is not a legal bale label�

� public Needle newNeedle�String label� byte data��� throws LabelException

public Needle newNeedle�String label� Date data� throws LabelException

public Needle newNeedle�String label� HaystackFile data� throws LabelException

public Needle newNeedle�String label� Float data� throws LabelException

public Needle newNeedle�String label� MIMEData data� throws LabelException

public Needle newNeedle�String label� String data� throws LabelException

public Needle newNeedle�String label� URL data� throws LabelException

These methods create a new Needle of the speci�ed type �e�g� the last method

creates the object of type object�needle�HayURL�� Explicit typing of the needle

data �instead of passing an Object to a generic newNeedle method� prevents

the programmer from passing an object for which a needle type does not exist�

If needles were created with a generic newNeedle method� a run�time error could

be possible� With explicit typing� error checking is done at compile time�
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�� Implementation of Straw Typing

This section describes the implementation of straw typing in Haystack�

Java�based Typing vs Label�based Typing

While the need for straw typing has never been disputed� various opinions existed on

how to implement it� Two approaches could be used to implement straw typing� First�

we could use Java typing� In other words� we could create a separate class for each

sub�type of straws� Alternatively� we could implement our own typing� Label�bases

typing is one possible way of doing that�

Until recently� Haystack had been using a hybrid of these two options� Although

mostly Java typing was used� labels existed for some subclasses of straws� Haystack

needs to support dynamic type creation �for example the user should be able to

create a new type of a tie�� and that is impossible with Java�based typing� However�

Java�based typing was used whenever possible for the following two reasons� ��� label�

based typing was believed to be signi�cantly inferior to Java�based typing in terms of

performance� and ��� Java already implemented inheritance and other nice features

of typing�

As Haystack grew in size� the number of classes that implemented a particular

straw type grew signi�cantly� It was increasingly inconvenient to go through dozens of

nearly identical �les in order to implement a minimal change� In addition� compiling

took a long time� Finally� we had to support label�based typing anyway for cases when

labels where used� The near�consensus that emerged eventually was that Haystack

was to stop relying on Java typing� and all typing had to be carried out through

labels� This decision had a number of consequences� First� a large number of classes

that essentially played the role of type placeholders were no longer necessary� Second�

each straw object needed to have a label� Third� a number of services that used the

properties of typing had to be revised� most notably HsDispatcherService� All of

these changes were made in the past few months�

Right now all typing is based on labels� The move away from Java�based typing did
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not cause a noticeable degradation of performance� Even though we still implement

certain straw types as di	erent Java classes� �for need of di	erent functionality�� this

has nothing to do with the implementation of straw typing�

Immutability of Labels

Once a straw of a particular type has been created� the type of the straw may not

change� This is because too many services make decisions based on the typing of that

straw� and it would be hard to ensure the persistence of invariants after type change�

As a way of ensuring that labels could not be mutated� the type of a straw �i�e� the

label� should be passed to the straw constructor �see section ���� for details about

how straws are created�� Finally� no method exists to alter a straw label�

Label Naming Conventions

In order to avoid discrepancies among the developers� the following conventions are

used when creating a label� A label must be composed of one or more sub�labels�

concatenated by a dot� for example �Needle�HayFile�Text�� A sub label may be a

simple word ��Text�� or a concatenation of several words ��CreateDate���

Haystack is case�sensitive when it comes to straw labels� All words that compose

a sub�label must start with a capital letter �e�g� �Createdate� should not be used��

In case of an abbreviation� e�g� �HTML�� special care must be taken to make sure

that word capitalization is used consistently�

�These classes are object�Tie�java� object�Bale�java� object�Needle�java�

object�needle�HayByteArray�java� object�needle�HayDate�java�

object�needle�HayFile�java� object�needle�HayFloat�java�

object�needle�HayMIMEData�java� object�needle�HayString�java�

object�needle�HayURL�java�
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Chapter 	

Tasks for the Future

This chapter outlines some of the tasks facing Haystack developers in the near future�

The reader should note that the theses by Adar and Asdoorian ��� �� also contain

a number of excellent ideas� some of which remain unimplemented� This chapter

starts with a section on future developments which discusses possible applications of

pro�ling and the improvements related to the user interface� The second section of

this chapter deals with �xing some of the existing implementation problems� those of

robust shutdown� dependence on the ORO package� and persistent storage�

��� Future Developments

���� Applications of Pro�ling

Applying pro�ling techniques falls outside the scope of this project� However� it is my

hope that pro�ling capabilities will be used for user adaptation in the future� Below

are a few examples of how that can be done�

� By combining the pro�les of documents contained in Haystack� we can generate

a pro�le of user interests in general� In fact� a �rst approximation of such a

pro�le is already implemented in Haystack� The pro�le has key �AllTextNee�

dles� and it is computed from all needles of type �Needle�HayFile�Text�� Once

we have a user pro�le� we can use the dot product to assess the relevance of a
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new document to user interests�

� The ability to create and manipulate word pro�les leads to far�reaching capa�

bilities for creating a highly perceptive information environment� For example�

by keeping a combined pro�le of documents viewed in the past �fteen min�

utes� Haystack can be aware of the current activity of the user� and utilize this

knowledge to sort results of Haystack or web search queries�

� Another use of pro�les would be to help the user keep track of her activities

on di	erent days� Haystack can compute a pro�le of documents accessed on

a certain day� and then select a few words most signi�cant to that pro�le to

summarize user activity for that day� Ability to keep track of user activities can

help the user manage her time better�

� Haystack can apply user information expressed by pro�les to improve Internet

search and the search of documents in Haystack� We can use user information

to post�process queries or pre�process query results�

���� User Interface Improvements

I believe that in the near future� the user interface �UI� will become a greater driving

force in the development of core services� In order to streamline Haystack develop�

ment� the core services should be modi�ed early so that the capabilities needed by the

UI will be ready as soon as they can be used� One of such capabilities is dynamic type

creation� In particular� a user has to be able to create a new type of tie� Haystack

maintains a list of legal tie types� Right now this list is static� it should be made

dynamic�

Another possible improvement related to the UI has to do with Haystack�s inten�

tion to improve the e	ectiveness of queries based on user�s data �les� To accomplish

that� we need individual query logs� Then� we can use machine learning to analyze

whether having user �les can help improve querying� To this end� Haystack could

implement� among other things� custom AltaVista and Yahoo query pages that would
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remember the query and response� and also identify the person doing the query�

��� Fixing Existing Implementation Problems

���� Robust Shutdown

Since Haystack is a multi�threaded and event�driven application� graceful termination

of all threads at user request imposes a number of requirements on the design of the

system� All transient information should be kept in a format that allows for easy

serialization and saving to disk� A central authority should keep track of all the

running threads� and be able to signal to these threads that they must terminate�

Since the threads may have to use resources managed by other threads� it is important

that the latter threads be terminated only after the former complete their work� In

order to ensure that all of these conditions hold true� Haystack programmers need

to examine that ��� the services that bootstrap other services �HaystackRootServer�

HsDispatcher� etc�� are implemented correctly� and ��� each service has a correct

implementation of the close�� method�

���� Dependence on the ORO Package

As was mentioned previously� Haystack has been relying on the package called ORO

�Original Reusable Objects� to implement regular expression search� The creators

of ORO seem to have abandoned their product� and it is unclear whether ORO

will remain to work with the newer releases of JDK� I believe that Haystack should

eliminate its dependence on ORO� and in the course of this thesis project� such

dependence has been reduced signi�cantly� One of the tasks for the near future is

to amend the few remaining modules that still rely on ORO� ORO matching can

either be replaced using the methods of class java�lang�String� or� if the matching

is complex� by using one of GNU�s regular expression packages��

�Two regular expression packages are available under the GNU General Public License at
http���www�cacas�org��wes�java� and http���www�crocodile�org��sts�Rex��
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���� Database Management

At the present time� straws are stored in a single �le managed by the database

management module� called DBM� This module has been borrowed from the freely

available source code of WC�s Jigsaw web browser� I believe that the DBM module is

inadequate to Haystack�s needs� In particular� DBM�s lack of scalability is a problem

because Haystack aims to incorporate large amounts of data over long periods of time�

Also� the DBM module appears to lack su�cient robustness� particularly at the time

of Haystack shutdown� when all persistent data gets written to the disk�

It has been proposed to implement persistent storage of straws using a real

database� for example� mySQL� I support this idea� However� I feel that the task

may prove more complex than it appears to be and we should not attempt the task

before a detailed design has been proposed and su�cient programming resources al�

located� In particular� we must be careful not to repeat the mistake with ORO� i�e�

getting involved with a product that faces the risk of being discontinued� We should

also be judicious in using the database capabilities because having a data model of

our own gives us the potential for innovation�

Another way we could use a database is to collect data on the usage of Haystack�

e�g� query logs� browsing history� etc� Once Haystack begins to be extensively used� a

substantial amount of such data will become available� Databases provide a standard

solution for managing usage data� Subsequently� we could employ machine learning

to improve Haystack�s user adaptability�
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Chapter 


Conclusion

In the course of this thesis� we have described the structure and the implementation of

the data model� We have also discussed a range of issues regarding the use of the data

model� We established the role of a bale as a representation of a complex relationship

that might also be viewed as a collection of smaller� homogeneous relationships� We

also concluded that a document should be represented as a bale�

The move to label�based typing has reduced the number of �les in Haystack by

��� and made it possible to dynamically add straw types� Label�based typing also

simpli�ed star graph matching� which is now ���� Java independent of any outside

packages �ORO��

Haystack was made more robust by reorganizing and simplifying the archiving

process� The extractor services now work� partly due to further speci�cations in

the data model �no more confusion between the roles of ties and needles�� Due to

minor improvements in the code throughout Haystack� operations on the data graph

are easier� Finally more error conditions are caught at compile�time as opposed to

run�time� which should make Haystack more robust�

Lastly� a capability to create and manipulate word�frequency pro�les is now in

place� paving the way to greater user adaptability� In fact� a pro�le of all text docu�

ments of a user is already being computed and can be used as an expression of user

interests�

All of these changes open the road to the work on user adaptability� novel in�
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formation presentation techniques and more e	ective information retrieval� It is my

hope that the work described in this thesis will endure� and that the full potential of

the Haystack project will be realized�
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Appendix A

Data Model Implementation

This appendix provides some implementation details of the data model� These details

are primarily of interest to Haystack developers and they were left out of the main

body of this thesis for the sake of the general audience� This appendix consists of

three sections dealing with needles� ties and MIMEData types�
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Table A��� Needle Types

Needle Type The object it wraps around Description
Needle�HayByteArray byte��
Needle�HayDate java�util�Date
Needle�HayFile haystack�object�HaystackFile A �le or a promise �see section ����
Needle�HayFloat java�lang�Float A 
oating point number
Needle�HayString java�lang�String
Needle�HayURL java�net�URL
Needle�HayMIMEData haystack�object�MIMEData

A�� Needles

Needles wrap around �real� data objects � strings� numbers� �les� etc� In fact�

needles can wrap around any type of a Java object� Needle types can be identi�ed

by the kind of object they wrap around� Table A�� shows the types of needles that

are currently present��

Note that all needle types are pre�xed with �Hay� in order to avoid name collision

between the needle class and the class being wrapped around�

�Note that types in Table A�� are the only types of objects that can be stored in a needle� In
order for a needle to be able to wrap around more types� new classes would have to be created� Also
changes would have to be made to the object creator service and possibly other services�
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Table A��� Tie Types

Tie Type Can Point From Can Point To
Author Bale Needle�HayString
Body Bale Needle
Contains Bale Bale
DocType Bale Needle�HayMIMEData
Filename Bale Needle�HayString
CreateDate Bale Needle�HayDate
LastIndexDate Bale Needle�HayDate
Location Bale Needle�HayURL
MatchesQuery Bale Bale �Query�
References Bale Bale or Needle�HayURL
QueryResultSet Bale �Query� Bale �QueryResultSet�
QueryScore Tie�MatchesQuery Needle�HayFloat
QueryString Bale �Query� Needle�HayString
SimilarText Bale Bale
Text Bale Needle�HayFile or Needle�HayString
Title Bale Needle�HayString

A�� Ties

A tie connects one straw to another and expresses the relation of the �from� straw

to the �to� straw� Table A�� lists some of the important tie types currently in use�

This table is not complete but can give the reader a general idea of what kind of ties

exist right now and how they are used�

There are conventions about when and how certain types of ties must be used�

These conventions are needed so that services know which tie to follow to get certain

data� For example� it is agreed that if a document bale has a location� this bale will

have a �Tie�Location� tie leading to the needle expressing the location�

In general� we can say which types of straws a particular kind of tie can connect�

The second and third columns in Table A�� show the types of �from� and �to� straws�

For example� the table indicates that an Author tie always leads from a �Bale� to a

�Needle�HayString� �or a subtype of �Needle�HayString���
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Table A�� MIME Types

DocType Explanation
Needle�HayMIMEData�BABYL Emacs mail archive
Needle�HayMIMEData�Directory
Needle�HayMIMEData�Dvi
Needle�HayMIMEData�GZIP GNU compress utility
Needle�HayMIMEData�Gif
Needle�HayMIMEData�HTML
Needle�HayMIMEData�Latex
Needle�HayMIMEData�Postscript
Needle�HayMIMEData�Tar
Needle�HayMIMEData�Text Plain Text
Needle�HayMIMEData�UUE UU Encoded archive
Needle�HayMIMEData�Unknown A document whose type is not known

A�� MIMEData Types

Table A� shows a list of HayMIMEData subtypes presently used in Haystack� MIME�

Data subtypes are used to express document formats�
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