A Data Model for the Haystack Document

Management System
by
[lya Lisanskiy

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer
Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
February 1999
© Ilya Lisanskiy, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and
distribute publicly paper and electronic copies of this thesis
document in whole or in part.

Department of Electrical Engineering and Computer Science
February 8, 1999

Certified Dy . ..o
David R. Karger

Associate Professor

Thesis Supervisor

Accepted by ..o
Arthur C. Smith
Chairman, Department Committee on Graduate Students

A Data Model for the Haystack Document Management
System
by

Ilya Lisanskiy

Submitted to the Department of Electrical Engineering and Computer Science
on February 8, 1999, in partial fulfillment of the
requirements for the degree of
Bachelor of Science in Computer Science and Engineering
and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Haystack is a novel personal information management system whose goal is to pro-
vide an intuitive interface to a user’s documents. This thesis describes the author’s
efforts to advance the system in several directions. First, we analyze the problem of
metadata representation and present a data model based on a directed graph struc-
ture. The data model is highly flexible in expressing relationships among data. In
the course of this thesis we attempt to define a document and offer our vision on this
subject. Second, this thesis describes a substantial redesign of the Haystack system.
In particular, we describe the new implementation of the services involved in the
archiving process. Finally, we describe an implementation of a tool that enables the
creation of word-frequency profiles that the Haystack system can use to adapt to the
user.

Thesis Supervisor: David R. Karger
Title: Associate Professor

Acknowledgments

[would like to thank, first and foremost, David Karger, my thesis supervisor. During
the past few months, David has been a great source of guidance and I have come to
appreciate his abundance of ideas, optimism and unintrusive management style.

Haystack has been a team effort and I am indebted to all the people who have
contributed in some way to the Haystack project: Professors David Karger and
Lynn Stein, and students Eytan Adar, Mark Asdoorian, Yana Ageeva, Damon Mosk-
Aoyama, Aidan Low, Christina Chu, Eric Prebys, Orion Richardson, Jing Qian and
others. I owe extra thanks to Damon with whom I worked closely and who contributed
much time to the work presented in this thesis.

I would also like to express gratitude to my parents, my sister Asya, and the rest
of my family, for their love, guidance and support.

[thank my friends Boris Raykin, Mike Bryzek and Dani Katz for proofreading my
thesis. Finally, I would like to thank Natasha Skorodinsky whose fun company, along
with the company of the three people above, made the past few months an exciting

and enjoyable experience.

Contents

1 Introduction
1.1 Haystack Project
1.2 Implementation L
1.3 Goals of This Project,
1.4 About This Thesis
2 Background and Related Work
2.1 Background
2.1.1 Information Retrieval
2.1.2 Metadata and Its Use in Haystack
2.2 Related Work
2.2.1 Metadata Representation
2.2.2 Information Retrieval
2.2.3 Knowledge Representation
2.2.4 Other Related Work
3 Introduction to Haystack
3.1 The Data Model
3.1.1 The Data Graph and Straws
3.1.2 Straw Typing
3.1.3 Straw Subtypes: Needles, Ties and Bales
3.2 Services
3.2.1 Data Manipulation Services

5

13
13
14
14
15

17
17
17
18
19
19
21
22
23

3.2.2 Information Processing Services
3.2.3 System Services

3.3 Other Implementation Features

Discussion of the Data Model

4.1 Goals of the Data Model

4.2 Representing Documents L L.
4.2.1 What I[s a Document?
4.2.2 Why a Document Is Represented by a Bale?

4.3 Collections L
4.3.1 Containment vs. Reference

4.4 How Bales Express Relationships

Data Manipulation Services

5.1 Event-Driven Services and Dispatching
5.1.1 Overview
5.1.2 Star Graph
5.1.3 How Dispatchingis Done
5.1.4 Running Triggered Services

5.2 The Archiving Process
5.2.1 Archiving Serviceo
5.2.2 Type Guessing

5.3 Data Processing Services L
5.3.1 Directory Extractoro
5.3.2 Tar Extractor

5.4 Implementation Details

5.4.1 Archive and Create Bale Methods

Profiling
6.1 Theory Behind Profiling

6.2 Representing Profiles o Lo

37
38
39
39
41
44
45
47

51
52
52
52
54
54
%)
56
57
59
60
61
62
62

6.2.1 The Profile Class

6.2.2 The WordIDMap Class
6.3 Computing Profiles o
6.4 Profiling Service and Utilities
6.4.1 Storing Profiles oo
6.4.2 Viewing Profiles oo

System Design

7.1 Promises and Haystack File
7.1.1 Promises
7.1.2 Haystack File o0
7.1.3 Promise Cache

7.2 System Services
7.2.1 Hayloft Management Service
7.2.2 Resource Control Service
7.2.3 Object Creator Service

7.3 Implementation of Straw Typing

Tasks for the Future

8.1 Future Developments
8.1.1 Applications of Profiling
8.1.2 User Interface Improvements

8.2 Fixing Existing Implementation Problems
8.2.1 Robust Shutdown oo
8.2.2 Dependence on the ORO Package
8.2.3 Database Management

Conclusion

Data Model Implementation

A1 Needles o

75
I6)
76
77
78
80
80
82
83
85

87
87
87
88
89
89
89
90

91

A.3 MIMEData Types

List of Figures

3-1 Data Graph Example 26
3-2 Data Graph Example with Complete Straw Types 27
4-1 The Current Way of Representing Relationships 47
4-2 An Alternative Way of Representing Relationships 48

10

List of Tables

A.1 Needle Types e
A2 Tie Types o o e
A3 MIME Types o

11

12

Chapter 1

Introduction

Today, anybody who has access to a networked computer will testify to the awesome
amount of available information and the frustration and pain of managing it. Indeed,
finding a needed document, be it an email message or a web page, is often a time-
consuming, if not an impossible task. A common approach to this problem is the use
of tools that make it possible to search for documents by using key words. However,
this approach is inadequate because people tend to associate documents with meta
information, such as the author or the date, which is ignored or used poorly by most
search tools. In addition, existing document management tools are unable to adapt

to a specific user and lack adequate user interfaces.

1.1 Haystack Project

The Haystack project is an attempt to create a personal document management
system that would address all of the above issues. Haystack utilizes the techniques
already available to computer scientists and also innovates in a number of ways.
The Haystack system is built on top of an Information Retrieval (IR) engine that
allows indexing and searching of textual information. In addition to indexing a user’s
documents, Haystack collects and structures metadata about these documents. The
discovery of an information structure creates an opportunity for novel approaches

to presenting information. Finally, the ability to access a user’s documents and to

13

monitor ways in which these documents are accessed, enables the creation of an

intelligent system that can adapt to the user.

1.2 Implementation

Haystack project was launched two years ago, and its development proceeded in
several stages. The first version of Haystack was implemented in Perl. Although the
initial results were encouraging, Perl proved to be vastly inadequate to the needs of
a large data-oriented system. Consequently, a second version has been implemented
using Java. The new Haystack system has a powerful design that takes full advantage

of Java’s object oriented paradigm.

Haystack Design

One of the strengths of Haystack lies in the data structure used to store information
about documents. This structure consists of a directed graph, in which nodes can
represent both data and relationships between the data. Haystack defines its own
notion of a Haystack Document as an aggregation of a document body and metadata.
In the Haystack data graph, the Haystack Document and its body are represented
by different nodes. Once a document becomes part of Haystack, a number of services
take on the task of extracting all useful information from it and fully integrating the

document into Haystack’s data graph.

1.3 Goals of This Project

At the time when the author joined the Haystack project, substantial parts of the
Haystack design and implementation were completed. However, a number of design
issues remained unresolved and the implementation was not sufficiently robust. Both
of these problems prevented further development of Haystack. The goal of this project
was to address the existing problems and to extend Haystack’s capabilities.

The initial stage of the Haystack design, described by Adar and Asdoorian [1, 2]

14

laid down the foundation of the Haystack data structure. This framework, also called
the data model, sometimes lacked the specificity required to enable the cooperation
of multiple services in the system. Many fundamental issues behind the data model
were left unanswered. There were both a practical need and a theoretical interest to
further explore the principles of the data model. In the course of the past few months,
we deepened our understanding of the data model and made the necessary changes
in the code to reflect this new understanding. This thesis describes these efforts and
their results. It also discusses the reasoning behind the current data model.

Another major challenge of the project was to enhance the system robustness and
to add new services. Since Haystack needs to manage a large amount of data, the
system requires sophisticated software structures. Some of these structures existed
and some needed to be created. A significant amount of work has been done to
improve the Haystack system. This thesis describes this work and the parts that
were added or significantly modified.

Finally, until recently, Haystack lacked the technology to support adaptation to
users. As a means to tackle this task, we implemented the capability to create word-
frequency profiles of a single document, a group of documents, or an arbitrary collec-
tion of text data. A word-frequency profile is a summary of a document’s contents,
which can be easily manipulated, compared to other profiles, etc. This thesis pro-
vides a description of the service and the structures that were created to support

word-frequency profiling.

1.4 About This Thesis

Audience

This thesis is primarily intended for two groups of readers. First, it is intended for the
computer science researchers and professionals who want to learn about the Haystack
project and its results. Second, it is designed for the present and future developers
of Haystack. The latter necessitates the inclusion of technical details not normally

found in scientific publications.

15

The Structure of This Document

In order to accommodate as wide an audience as possible, this thesis provides some
background on information retrieval and metadata storage. Chapter 2 provides this
information and puts the project into the context of work done by other researchers.
Chapter 3 introduces the Haystack system, its data model and services. Chapter
4 discusses several conceptual issues having to do with the representation of docu-
ments in the Haystack data model. Chapter 5 reviews the implementation of data
manipulation services in Haystack, followed by Chapter 6 on the implementation of
word-frequency profiling. Chapter 7 describes a number of internal data structures
and services that are needed to enhance Haystack’s robustness or improve perfor-
mance. Chapter 8 outlines some of the tasks that lie ahead of Haystack developers

in the near future. Chapter 9 summarizes and concludes this thesis.

Other Contributors

The work described in this thesis is the result of a collaborative effort of many mem-
bers of the Haystack group, in particular, the leader of the group, Professor David
Karger, and the two students responsible for the original design of Haystack, Eytan
Adar and Mark Asdoorian. This thesis builds upon the constructs developed by these
people. In addition, many insights about the data model came as a result of discus-
sions that involved the entire Haystack group. Finally, parts of the implementation

work were a result of collaborative efforts of Damon Mosk-Aoyama and the author.

16

Chapter 2

Background and Related Work

The Haystack project borrows its techniques from a number of computer science
fields, some of which require brief introduction before we can proceed to describe the
Haystack project. Section 2.1.1 introduces information retrieval, followed by Section
2.1.2 that discusses the notion of metadata and how it is used in Haystack. Finally,
Section 2.2 reviews related work in the fields of IR, metadata representation and

knowledge representation.

2.1 Background

2.1.1 Information Retrieval

Information retrieval (IR) refers to retrieving documents or texts with information
content relevant to a user’s information needs. Information retrieval includes two
related, but different activities: indexing and searching. Indexing refers to the way
documents and requests are represented for retrieval purposes. Searching refers to the
way the files are examined and the items relevant to a search query are extracted. The
two activities of indexing and searching have formed the focus of most of the research
that has been carried out by the IR community. However, there is now increasing
interest in complementary studies of the ways that people use IR systems and how

user-system interactions should be organized to facilitate effective retrieval. While

17

indexing and searching are central to automated retrieval, they can support other
forms of retrieval, such as browsing, which can also be enhanced by sophisticated
visual presentation.

The Haystack project goes beyond basic indexing and retrieval and focuses on
developing advanced data representation and visualization techniques. Haystack uses
an off-the-shelf search engine, called ISearch [7], to implement basic indexing and
retrieval. We sometimes refer to this search engine as the “underlying IR system.”
Haystack does not rely on any features specific to ISearch — so that this search engine

can be easily substituted by another.

2.1.2 Metadata and Its Use in Haystack

A key feature of a good document system, such as Haystack, is the ability to represent
information about documents and to express inter-document structure. Information
about documents is called metadata. For example, a very important piece of metadata
is the data format in which a document is stored (e.g. Latex, MS Word, plain text).
Other examples of metadata are the document author(s) and the creation date. A
user’s annotation to a document is also considered a piece of metadata. This section
discusses briefly the use of metadata in Haystack and then reviews related work on
metadata representation.

Metadata can come from a variety of sources. It can be passed along with a
document when the document is archived. It can also be extracted from the document
(e.g. atitle of an HTML page can be identified by an appropriate HTML tag). Finally,
metadata could be generated by the owner of the document, as in the case of the user
attaching a note with comments.

There are at least two ways in which Haystack uses metadata. First, metadata
is used to search for a document. The IR system indexes metadata along with the
text of documents. When a user queries Haystack to find a document, the ability to
search metadata augments the user’s ability to identify the desired document and to
filter out undesirable ones.

The second way in which Haystack uses metadata is to establish relationships

18

among the user’s documents. The fact that two documents have the same author im-
plies a relationship between the two documents, and the Haystack data model makes
it possible to capture this relationship. Similarly, if two web pages were visited one
after another, it might be indicative of a connection between the two and this infor-
mation should be recorded. Relations among the documents can also be considered
metadata. The presence of relationships among the documents may be helpful to

many tasks, including browsing the data graph to find a desired document.

2.2 Related Work

2.2.1 Metadata Representation

There have been a number of projects that address the use and representation of meta-
data. Most of these projects look at metadata from the point of view of information
filtering or document transmission over the web.

One of these projects, the Resource Description Framework (RDF) [6], is an effort
of the World Wide Web Consortium (W3C) to create an infrastructure to enable
encoding, exchange and reuse of structured metadata. RDF is an extension of XML
that creates a syntax that can be used to express metadata about the documents on
the Web. RDF does not define any metadata — instead, it allows interested parties
to create metadata schemas and define metadata semantics.

One of the applications of RDF is the Dublin Core Metadata Element [17] which
defined fifteen standard fields to be used to describe a generic on-line document (e.g.
title, author, language). The primary objective of the Dublin Core project is to
facilitate discovery of electronic documents on the Web.

There are several key differences between how metadata is handled by RDF /Dublin
Core and the Haystack data model. First of all, Haystack does not impose any
schemas on its data model. In other words, Haystack does not limit the kinds of meta-
data that can be associated with a document. Haystack does not have to follow the

formal approach for representing metadata taken by the RDF /Dublin Core because

19

Haystack is not concerned with the ability to share metadata with other users, and
distribute it over the Web. The lack of such ability is, of course, a disadvantage.' The
upside is that we can afford a flexible and informal data model — word searching does
not require that semantics be defined and the human user, when browsing the data
graph, is capable of extracting meaning from different syntactic constructs himself.

While most metadata models aim to allow authors to annotate documents with
metadata for the purpose of document distribution, Haystack is not concerned with
information transfer. Rather, Haystack’s concern is to represent the metadata in a
way that would make browsing the document space as convenient as possible. Hence,
Haystack can afford a highly-flexible data model, without being concerned about
standardization.

A number of metadata representation systems target specific, goal-oriented kinds
of metadata. An example of such a system is PICS, which stands for the Platform
for Internet Content Selection [5]. PICS is an Internet-based technology that gives
Internet users control over the kinds of material to which they and their children have
access. PICS makes it possible to label Internet documents. Labels can provide any
kind of descriptive information about Internet documents, in particular they make it
possible to rate a document according to its appropriateness for viewing by children.

PICS is an information filtering tool that enables users to find documents with
the appropriate content. In this, the goals of PICS represent a subset of the goals of
Haystack. In addition to improving search, in Haystack, metadata creates a linkage
among the documents which provides a way for the user to find a document by
browsing the document net.

Another system related to Haystack was developed at the Stanford University
and is called Lore [4]. Lore is a database management system specifically designed
for managing semi-structured information (i.e. structure is not schema-based). In
this, Lore’s data model is similar to that of Haystack.

Finally, there are a number of commercial document management systems that

!Note that given a set of metadata, Haystack could use RDF to define an appropriate schema
and distribute it to other users.

20

allow a user to annotate and connect related documents (e.g., [8]). Usually, the role
of metadata in these systems is marginal, and a system does not actively seek to

expand the metadata set or use it to create inter-document structure.

2.2.2 Information Retrieval

Information Retrieval is relevant to Haystack in two ways. First, Haystack needs
to enable the user to search documents and metadata. To this end, Haystack uses
an external search engine (ISearch, [7]). Haystack does not attempt to improve the
performance of an IR system per se. Instead, Haystack tries to make an IR system
more useful to the user by enabling the user to search not only the document itself,
but also metadata.

Traditional IR systems (e.g., [9, 14]) lack the ability to customize their behavior
to a user. Haystack attempts to make up for that weakness by using IR techniques
to implement user customization. This is the second way in which IR is relevant to
Haystack. A number of academic projects attempted, with various degrees of success,
to combine IR techniques with user customization. Stanford University researchers
created a system [3] which learned about a user’s preferences by having the user rate
presented web pages. The system could then find more web pages of interest to the
user. Another project in this direction was undertaken by a group at UC Irvine [11].
The Stanford and UC Irvine systems used the vector-based model, a standard for IR
systems (e.g., [14]), to represent user interests. Haystack takes a similar approach to
representing user interests (see Chapter 6), but is different in that it learns about the
user from observing the documents in her possession and the documents she accesses
on the Web. Note that the role of a Haystack user in the learning process is passive,
unlike that of a user of the Stanford or UC Irvine systems, who is required to be

active in order for a system to learn.

21

2.2.3 Knowledge Representation

Haystack can be considered a knowledge representation (KR) system. Unlike a general
knowledge representation system, Haystack is primarily interested in knowledge about
documents. Knowledge about non-documents, such as people, can also be represented
in the Haystack data model, but the primary purpose of this knowledge is to serve as
an intermediary in establishing relations among documents.

Although Haystack was not designed to be a pure knowledge representation sys-
tem, classical texts on this field describe structures similar to those of the Haystack
data model. For example, Reichgelt [13] describes a semantic net as a graph consist-
ing of nodes and links. Links are unidirectional connections between nodes. Nodes
correspond to objects, or classes of objects, in the world, whereas links correspond to
relationships between these objects. This sounds very similar to what Haystack does,
with nodes and links corresponding to Haystack needles and ties.

One of the major differences between the classical KR systems and Haystack
is that these systems deal with data at much finer granularity than Haystack. A
node in a KR usually represents a small piece of data, whereas in Haystack a large
number of nodes are document bodies. A document, sometimes very large in size,
is an aggregation of a large amount of unstructured data. We feel that “document”
level granularity is appropriate for Haystack due to an end-to-end argument [15].
Documents are Haystack’s input as well as its output (Haystack finds the document
for the user, and the user finds needed information in the document herself). Thus,
there is usually no need to artificially break up documents into smaller pieces for the

sake of representation.?

2There are exceptions to this statement. It might be convenient to break a book into chapters
because excessively large quantities of data are impractical in many respects, including that of
information retrieval. In fact, the issue of the right degree of granularity at which data should be
indexed, represented or returned to the user presents an interesting research topic.

22

2.2.4 Other Related Work

An interesting project, parts of which are related to Haystack, was conducted by
Sheldon [16]. The project creates an architecture for information discovery based on
a hierarchy of content routers that provide both browsing and search services to end
users. The end user is presented with a document space that bears some similarities
to that of Haystack. For example, documents in this system are organized in a tree
structure. There is also an object representing a collection of related documents,
which is something we considered (and rejected 2) in the design of the Haystack data

model.

3See Section 4.3 to find out why.)

23

24

Chapter 3

Introduction to Haystack

This chapter gives a high-level description of the Haystack implementation. The
chapter consists of the following three parts. The first part introduces the Haystack
data model, i.e. the structures used to represent documents and other knowledge. This
part is followed by a review of services, i.e. functional components of Haystack. The
last part familiarizes the reader with several features of the Haystack implementation
that fall outside the scope of the first two parts but are still needed to understand

the remaining chapters of this thesis.

3.1 The Data Model

3.1.1 The Data Graph and Straws

All information about documents is represented as a directed graph, sometimes re-
ferred to as the Haystack data graph. The nodes in this graph are called straws.
Straws subdivide into three subtypes: needles, ties and bales. A needle represents a
piece of “raw data.” A needle is basically a wrapper around a Java object, such as a
string or a number. A needle can also wrap around a file. A tie represents a directed
relationship between two straws. For example, if straw A represents a document and
straw B represents the person who wrote that document, an “Author” tie connecting

A and B could be created to represent this relation. The reason that relations are

25

() () (
Bale Tie Bale W
Document Author Person J
\ J \ J \\
| [
(N\ () (N\
Tie Tie Tie
Document Type Body Title
\ J \ J \ J
(N\ () (N\
Needle Needle Needle
Latex Type File that containg "Stri ng:’ g
document text Master’s Thesis
\ J g J g J

Figure 3-1: Data Graph Example

represented as independent nodes in our data graph is that we might want to point to
or annotate a relation. For example, if a user creates a tie between two documents to
indicate that they are related, he can attach to the tie a String needle with an expla-
nation of why the tie was created. Finally, a bale represents a complex relationship
among multiple straws. For example, a bale can be used to represent a document,
a person or a query. These objects usually comprise several parts. For example a
person object can combine the person’s name, address and the date of birth. A bale
is a centerpiece that connects these parts and represents their aggregation. Needles,
ties and bales are basic constructs that could be used to represent any knowledge,
including knowledge about documents. Note that the pointers that connect the nodes
in the data graph do not carry any semantic information. Instead, if a relationship
needs to be expressed between two straws, a tie is used to connect the straws and
express the nature of the relationship.

Figure 3-1 shows an example of a data graph used to represent information about a
document. In this example, the document is a Master’s thesis stored in IATRX format.

Each box in the figure represents a straw. At the top of each box is the primary type

26

N\ (N\ (
(Bale Tie.Author Bale W
L Document Author Person J
J . J &
[I
) () ()
(Tie.DocType Tie.Body TieTitle
{ Document Type Body Title
J (. J (. J

-

) A 4 A
Neque.HayMlMEData.Latex Needle.HayFile Needle.HayString

{ Latex Type File that contains String:

document text "Master’'s Thesis|
g _J)

J -

Figure 3-2: Data Graph Example with Complete Straw Types

of that straw, and at the bottom is a description of what the straw represents. Note
that the bale representing the document and the needle representing the body of the
document are different entities. The body refers to the actual text of the document.
Besides the body, other information is present about the document, namely, its type

(IATRX), title (“Master’s Thesis”) and the author, represented by a person bale.

3.1.2 Straw Typing

Every node (straw) in the Haystack data graph must belong to one of the above-
mentioned subtypes: a needle, tie or bale. These subtypes can further subdivide into
sub-subtypes, so that straw types form a hierarchy similar to that of Java types. The
type of a straw is expressed by a string, called a label. Examples of type labels are
“Bale,” “Tie.Author” and “Needle.HayFile.Text”. The supertypes of a straw type
can be derived from its label. For example, a straw labeled “Needle.HayFile. Text” is

? Kach straw

a subtype of “Needle.HayFile”, which in turn is a subtype of “Needle.
has a type label. The label is a final authority on the type of that straw. In the

remainder of this thesis we will use the terms “label” and “type” interchangeably.

27

Figure 3-2 shows the same graph as in the previous example (3-1), except that

the straw types are specified completely.

3.1.3 Straw Subtypes: Needles, Ties and Bales
Needles and Ties

In example 3-2 the needles represent “raw data” and the corresponding ties express
the significance of the needles. To illustrate this distinction, consider the needle on
the right containing the string “Master’s Thesis.” Its role in this graph is to express
the title of the document. We could imagine a second document, a very short one,
that consists of only two words: “Master’s Thesis.” The very same needle could serve
as a body of that second document and be connected by a “Tie.Body” tie to the
second document.

By having needles and ties, we can represent “raw data” and significance of data
separately. Nothing about a needle should ever express the significance of the data
in it. The needle label indicates the nature of the Java object encapsulated by the
needle. The tie label indicates the type of relationship (significance) expressed by the
tie.

In light of the above, I would like to explain a writing convention that might
be confusing to the reader. We demonstrate it using the example in figure 3-2. In
that example, we may sometimes write about the “Needle.HayFile” (middle at the
bottom) as the “body needle.” The word “body” in this phrase is used to identify a
needle by its significance in the context of the document bale. Use of the term “body
needle” should not be interpreted as an expression of some inherent property of that
needle.

There is no predefined set of tie labels and a user can create ties with arbitrary
labels. The only important thing about a tie label is that the party that creates a tie
and the party that uses the tie have to agree on the meaning of the label.

The fact that the Haystack data model allows the user to create a data graph of

an arbitrary structure sets the Haystack data model apart from the data model of a

28

relational database, in which a schema precludes a user from dynamically changing

the structure used to connect the data (tables).

Immutability of Needles A needle encapsulates a piece of data (a Java object).
Once a needle is created, the data may not be changed. The reason for this restriction,
called needle immutability, is that Haystack might create other straws that point to
the needle, or whose data is derived from the data in the needle. If we change the
data in the needle, other straws or pointers might become incorrect. We choose not

to change the data under the pointers.

Needle Uniqueness All needles in Haystack are unique, in that there are no two
needles that encapsulate two identical Java objects. There are two reasons why needle
uniqueness is desirable. First, Haystack strives to discover all possible relations among
the elements of the data graph. If two needles have the same data, this implies a
relation between the two. Of course, we could create a tie between them, but merging
the two needles is even a simpler solution. For example, if two documents have the
same title, the documents would be connected through the needle encapsulating the
string with the title.

The second reason for needle uniqueness is the conservation of space. Although
it might not matter for needles of small size, it would definitely be wasteful to store
two large file needles with identical data.

Note that if for some reason Haystack did not merge two identical needles, that
would not break Haystack or its data model. Needle uniqueness is a nice feature
to have. Without it Haystack would still function, although its usefulness would be

reduced.

Bales

We defer the general discussion of bales until the next chapter. However, there is
one feature of bales representing documents that we must introduce now. If a bale

represents a document, it must attach a “Tie.DocType” tie leading to a needle that

29

expresses the format in which the document body is encoded, e.g. Postscript. The
DocType is an important piece of a document’s metadata. The significance of the

DocType will become apparent as this thesis progresses.

3.2 Services

The functional part of Haystack is implemented by services. A service is a functional
Java class with a clearly defined set of duties. A service can either run at all times,
or can be called in temporarily when needed. There are over a hundred services in
Haystack that carry on a variety of duties, ranging from archiving and processing
documents, to indexing and searching the data graph, to helping other services.

The services are bootstrapped by a module called the HaystackRootServer. This
module is responsible for initializing, running and stopping services. We refer the
reader to the Appendix A.2 of [1] for an in-depth discussion of the HaystackRoot-
Server.

The goal of this section is to familiarize the reader with the services that will be
relevant in the course of this thesis. It is not our goal to provide a comprehensive
review of services on Haystack. Such a review can be found in [1]. The three main

groups of services that we consider in this section are:

Data manipulation services archive documents, extract information from them,

and put these data into the Haystack data graph.

Information processing services extract information from documents and create
structures that could be used for user interface tasks. The services create word-
frequency profiles, index files for searching, etc. Unlike the services in the

previous category, information processing services do not modify the data graph.

System services assist other services in their duties, carry out a variety of system
tasks (e.g. interacting with the database), manage the Haystack file repository,

etc.

30

Other major groups of services in Haystack are the interface, observer and com-
munication services. Interface services are responsible for the user interface. At
the present time three user interfaces are available: web based, windows-based (im-
plemented in Swing) and command-line. Observer services track the user’s web
browser, SMTP mail client and other gateways to actively archive user documents.
Communication services are responsible for inter-Virtual Machine and and inter-
Haystack communication. These parts of Haystack functionality fall outside the scope
of this thesis.

Before we proceed to describe services in greater detail, it is worth mentioning
that Haystack outsources some functionality to database management and IR sys-
tems. Haystack employs a database management module to persistently store its

data. Haystack also uses an off-the-shelf IR system to index and search textual data.

3.2.1 Data Manipulation Services

Services in this group are responsible for creation and manipulation of the Haystack

data graph. The following services comprise the group:

The Archive service coordinates the process in which a document becomes part of

Haystack, e.g. creates a document bale and attaches needles with the metadata.

Fetch services fetch the body of a document given a location. For example, a URL

fetch service obtains the file specified by a URL.

The Type Guesser service determines the type of a document (e.g. Postscript)

when the document is archived.

Extractor services extract data from documents that contain or point to other
documents. For example, a Gzip extractor uncompresses Gzip documents and

makes the decompressed file a part of Haystack.

Field-Finder services extract information from archived documents. For example,
a Latex field-finder extracts the title, the author and other metadata from a

Latex document and attach appropriate needles to the document bale.

31

Textifier services extract text from formatted documents. For example, the HTML
textifier gets rid of the formatting information in an HTML document (tags).
The process of extracting text from a document is called teztification. When a
textifier service completes its work, the extracted text is placed into a needle

which is attached to the document bale.

Similarity services identify similar documents. For example, the Similar Text ser-
vice identifies documents with nearly identical text and connects the two doc-

ument bales with an appropriate tie.

Many data manipulation services work by reacting to changes in the data graph.
A service can indicate that it is interested in a change of a certain kind. When that
change occurs, an appropriate event is generated. A dispatcher service, called Hs-
Dispatcher, notifies interested data manipulation services of the event, which triggers
the services to execute. For example, an HTML field-finder service wants to be called
when a bale is created for an HTML document. At the time of initialization the
HTML field-finder service specifies a structure, called a star graph, that expresses
the pattern in the data graph that should trigger the service. This star graph is
then passed to the dispatcher service. The dispatcher service keeps track of changes
made to the data graph and, in the event that a pattern expressed by the star graph
emerges, notifies the HTML field-finder of this event.

Data manipulation services may create chain reactions, in which addition of straws
to the data graph by one service triggers other services to run. The chain reaction
stops when all possible information is extracted and this information is put in the

data graph.

Example: Data Manipulation Services in Action

The work of data manipulation services is best illustrated in action. Thus, we will
describe a sequence of actions that Haystack takes upon a user’s request to archive
a document. Although this description does not include all of the data manipulation

services, it should be of interest to the user in its own right because much of what

32

is described in this thesis was meant to improve the process below in one way or

another.

In this example we describe what happens when a user issues a request to archive

an HTML document at a specified URL.

1.

The archiving service is given a URL location of a document; the Archiving

service calls the URL fetch service to obtain the body of the HTML document.

The Type Guesser service is called to determine the type of the fetched docu-
ment. Based on the “.html” extension in the URL, the type guesser determines

the type to be “HTML.”

The archiving services creates a bale to represent the document, and attaches

metadata needles (location, document type) to the bale.

. An HTML field-finder service reacts to the creation of a bale with document

type “HTML”. The field-finder extracts metadata from the body of the HTML
document (title, author), puts the metadata into needles and attaches these

needles to the document bale.

An HTML textifier service reacts to the creation of a bale with document type
“HTML.” The service removes HT'ML tags from the body of the document, puts
the result into a needle and attaches the needle to the document bale using an

appropriate tie.

3.2.2 Information Processing Services

Information processing services extract information from documents for specialized

purposes, but do not make changes to the data graph. The information extracted by

the services could be used for a variety of tasks, such as searching and customizing

the user interface.

The Index Service indexes the text of documents and metadata with the underly-

ing IR system. This operation makes it possible to subsequently query the IR

system.

33

The HsProfiler Service creates word-frequency profiles of documents. It can also
create a variety of custom profiles, e.g. a profile of all documents. The word-

frequency profiles can by used for searching the documents and for other tasks.

3.2.3 System Services

System services help all other services carry out their duties. They also provide

low-level management of the straw database. Below are some of the system services.

The Object Creator Service facilitates the creation of straws and ensures that
various Haystack invariants are observed. For example, the service ensures

needle uniqueness by verifying that no two identical needles are created.

The Persistent Object Service interacts with the underlying database to persis-
tently store the data graph. The service also loads straws in memory when

needed.

The Hayloft Management Service helps other services manage the directory that

serves as Haystack’s persistent data repository. This directory is called the

Hayloft.

The Resource Control Service enables concurrency control. It provides other

services with a mechanism to lock resources to prevent race conditions.

3.3 Other Implementation Features

Promises and HaystackFile

In theory, Haystack aims to manage a very large amount of data. Very often Haystack
has to maintain several slightly different copies of the same piece of data (e.g., a
body of a Gzipped (original) Postscript document, a decompressed version of the
same document, and a version that has been textified). Instead of storing a piece of
data, Haystack can use an object called a promise, that contains information on how

to obtain that piece of data. For example, instead of storing an on-line document

34

internally, we can store a promise that contains the URL of that document. When
the data in the promise is needed, the promise is fulfilled, and the data is returned.
In order to abstract a piece of data regardless of whether it is stored internally or
can be obtained from a promise, Haystack implements a structure called HaystackFile.
A HaystackFile might contain either a local file with the data, or a promise. The
HaystackFile is transparent to its possessor in that the behavior is identical in both

cases. Section 7.1 talks about promises and HaystackFile in detail.

Haystack IDs

In order to uniquely identify objects in Haystack, a service exists that can generate

unique IDs, called HaystackIDs. Thus, all straws and promises have unique IDs.

35

36

Chapter 4

Discussion of the Data Model

Section 3.1 of the previous chapter gave an overview of the data model. This chapter
provides an in-depth discussion of several important issues of the Haystack data
model.

Haystack is a document management system, and the goal of its data model is to
represent documents in a way that would enable the user to browse and search for the
documents in the most efficient and intuitive manner. To this end, Haystack’s data
model makes it possible to express metadata and relations among documents, all of
which create structure among the Haystack documents. Needles, Ties and Bales are
the basic constructs that, in theory, allow us to build any knowledge system. In this
chapter, we try to understand how the knowledge about documents can be expressed
using these three types of Straws.

We begin by outlining some desired criteria for the Haystack data model in Section
4.1. We also give a sample list of objects that we might want to represent in Haystack.
Since documents are the most important objects in our system, they receive a lot of
attention in this chapter. Specifically, in Section 4.2 we discuss what a document is
and why a document is represented by a bale. Then, in Section 4.3 we talk about
another important class of objects — collections, and whether they deserve a special
representation. There, we also discuss the difference between the relationships of
containment and reference. Finally, in Section 4.4 we take another look at a bale as

an encoding of a complex relationship.

37

4.1 Goals of the Data Model

Anything that is not a primitive type or a bilateral relation, is represented as a bale.
Unlike needles and ties, bales are very general constructs and it is not obvious exactly
how bales represent objects. To answer this question, we need to set out reasonable
expectations of the kinds of objects that we might want to represent in Haystack.
Below is a list of seven items that are representative of the objects we might want to

represent in Haystack.

1. Text document.

2. HTML page. The key feature of an HTML document is that in addition to the

text of its own, the document contains links to other documents.

3. Book. A large structured on-line document that can be physically represented in
many ways — as a number of files with an index file referencing the files that
contain the parts (chapters), as one large file, etc. An interesting feature of a
book is that it represents a document, and at the same time its parts (chapters)

are significant enough to be considered documents on their own.

4. Tar archive. Files of this type are created by a program called tar'. The purpose
of this program is to group other files in one file. Normally, tar files are not
expected to be viewed directly; archived documents must be extracted before

they can be used.

5. Directory. A directory contains references to other files. It may be argued that a

directory contains these files, but this depends on the definition of containment.

6. Query. This object represents the event of a user querying some knowledge base
(e.g. web search query.) The two key parts of a query object are the query

itself (presumably a string) and the set of objects returned as a result of the

!Tar stands for Tape Archive. For more information about tar see
http://www.gnu.org/software/tar/tar.html

38

query. A query must be represented in the Haystack data model because a lot

of useful information could be derived from it.

7. Person. Having a representation of a person is useful because people author doc-
uments. Also, a person is an example of an object that is not a document and
it is important that the Haystack data model be flexible enough to represent

objects that are not documents.?

4.2 Representing Documents

Documents are the most important objects represented in the Haystack data model.
This section discusses documents and the way they should be represented. First, we
need to define what we mean by the word “document”. Once this is done, we explain

why bales and not needles are chosen to represent documents.

4.2.1 What Is a Document?

The word “document” can be defined in many ways. Webster’s dictionary defines a
document as “a writing conveying information” or “a material substance having on
it a representation of the thoughts of men by means of some conventional mark or
symbol.”

The Dublin Core workshop defined document-like objects (DLOs) by example. Ac-
cording to Weibel [17], an electronic version of a newspaper article or a dictionary is
considered a DLO, whereas an unannoteted collection of slides is not. While acknowl-
edging that DLOs might include all kinds of media (images, audio), Weibel says that
“the intellectual content of a DLO is primarily text, and that the metadata required
for describing DLOs will bear a strong resemblance to the metadata that describes

traditional printed texts.”

2Haystack does not attempt to mimic the real world. However, many relationships among the
documents are derived from real world objects, and Haystack should be able to represent these
objects as well, to the degree that this representation enables the expression of relationships among
the documents.

39

We define a “real-world” document very broadly: a document is a representation
or encoding of information. A document can originate in the real world — in a printed
form, or in the electronic world — in the form of a file. In either case, before it can
enter Haystack, the document must be represented as a computer file, called the body
of the document.

This definition is far from rigorous — in fact, the term document is usually un-
derstood from examples, rather than from definitions. Of the examples on page 38,
the first five items are considered documents — a plain text, an HTML page, a book,
a tar archive and a directory. The reason that a directory is considered a document
is that somewhere inside the operating system it is represented by a file (at least in
many operating systems).

The key property of a document is that either a document body exists, or it
is conceivable that such body could exist (directory). A person is not a document
because a person could not be wholly represented by a computer file. Nor is a query
considered a document, because a query, which we define as an aggregation of a query
string and its results, is not a file. Note that under our definition of a document, it
is moot for a document to have multiple bodies.

There are a lot of questions about the exact meaning of the word “document.”

e Suppose that we have the same “document” saved as an MS Word and HTML

files. Should these two files be considered to store the same document?

e Suppose that we have two copies of the same book. A reader wrote his comments
on the pages of one book, the other has pages torn out. Should these two books

be considered the same document?

There are no “right” answers to these questions and we will not try to answer them.
The important questions for Haystack are: (1) how to represent a document and (2)

once a representation is chosen, what exactly does it represent.

40

4.2.2 Why a Document Is Represented by a Bale?
Haystack Document

So far we have explored what we call a document in the “real world.” In this subsec-
tion we write about the representation of documents in Haystack. What we represent
in Haystack is somewhat different from the real world document — we call it a
Haystack Document (HD). We define a Haystack Document as an aggregation of
the document body and the metadata.

We must pick an object in the Haystack data model to represent a Haystack
Document. The object representing a Haystack Document would attach straws rep-
resenting the metadata. There are two candidates for the job — the needle that stores

the document’s body or a bale.

Why the Body Needle Cannot Represent the Haystack Document

In theory, a Haystack Document could be represented by a needle wrapping around
the file containing the body of the document. After all, each real world document
has a body, and is defined by this body. However, this needle cannot serve as such a

representation for the following reasons:

e Haystack does not need to possess a document’s body to represent the
document. There are two situations in which we want to have a representation

of a document without having the actual body.

— We might know about a document whose body might be unavailable. For
example, we might have a citation of a book, with its author, title, pub-
lisher, etc., yet not have the book itself. The fact that the body of the
book is not currently available should not preclude us from representing

the book.

— It might be conceivable that a a body exists or could be created, yet
Haystack does not possess it. For example, consider a directory. A di-

rectory could be represented as a file as it is the case in the Windows

41

operating system, or if the directory is fetched through a web server. At
the same time, Java I/O does not allow the programmer to obtain the body
of the directory — the programmer should use Java methods to query the
operating system about the contents of a directory. To deny a directory a
status of a document in this case would mean that a representation of a
directory depends on the particulars of the computer system, which should

be irrelevant to the question of whether a directory is a document or not.

Since a document body is not always present, and we want our representation
to be consistent among the documents with and without a body, it is impossible

to always represent a document as a needle.

e A needle could not possibly represent a document because it is nothing but
“raw bits”. A needle that contains a string “My Thesis” could be the body of
one document and the title of another. Since needles are unique it would be
extremely confusing if the needle represented a document and a title at the same
time. In fact, metadata could not be attached to the needle directly, because

the metadata is only relevant to the body in the context of the document.

Thus, the needle that contains a Haystack Document’s body cannot represent the
Haystack Document. Moreover, no other metadata needle can represent a Haystack
Document for the similar reasons.

Having ruled out needles, a bale is left as the only plausible representation of a
Haystack Document. In fact, a bale is a good representation because it was designed
to represent a complex relationship and that is what Haystack Document is — it is

an aggregation of the document body and the metadata.

Implications

The fact that a Haystack Document represents an aggregation of a body and metadata
implies that there can be two different Haystack documents whose bodies are iden-
tical. Although not common, this is a plausible situation. It is conceivable that two

people independently create two documents with the same text. To reflect the reality

42

accurately, Haystack should have different representations (two different document
bales) for these two different real life objects.

Finally, we answer the two questions that were left unanswered at the end of the
previous section, except that now we talk about a Haystack Document instead of a

real world document.

e If we have the same “document” saved as an MS Word and HTML files, these
would be archived separately, and represented with different Haystack Docu-
ment bales. The two files correspond to two Haystack Documents because at
least one of the pieces of their metadata is different — the DocType. Note that
if the SimilarText service is running, it would see that the textified versions of
the two documents are (nearly) identical and would create a “Tie.SimilarText”

between the two bales.

o [f there are two copies of the same book and a reader wrote his comments on
the pages of one book, and some pages are torn out in the other, we would
also have to create two different Haystack Document bales. Their bodies are
slightly different (pages missing) and the second book has metadata (the reader’s
comments) that the first one does not. Again, most likely, a connection between
the two books would have to be established eventually — by a SimilarText

service, through a common Author needle, or in some other way.

We were able to answer these questions because semantically, a Haystack Document
is closer to a copy of a document than to a document. Haystack can deal with this
because storing “an extra copy” is cheap, and we hope the human user would figure

out in which piece of information she is interested.

Immutability of Documents

Once a document bale is created, and a body needle is attached, this body may not
be detached or replaced by another one. When a body needle is attached, Haystack
services react to this event by creating additional straws based on the body of the

document. For example, once a body of a Postscript file is created, an appropriate

43

textifier service creates and attaches to the bale a needle that contains the text of the
body. If the original body disappears or changes®, the new straws might no longer be
correct. Since it is virtually impossible to determine which straws became incorrect,
a body needle may not be detached or replaced.

In fact, the above argument applies not only to the body needle, but also to
the DocType, location and other metadata needles. If any of these defining needles
change, the Haystack Document would no longer be the same. The question then
arises: what shall we do if one of the defining needles needs to change? Unfortunately,
Haystack does not currently deal well with such mutations (but might be able to in
the future).

A standard solution to the “mutation” problem is to create a completely different
bale. By doing this, we introduce redundancy but avoid creating an incorrect data
structure. Haystack relies on the user to ultimately decide which piece of data she
wants to use.

For example. consider the following situation. Suppose a user archives a revision
of a document, that is already represented in Haystack. Even if the user is not
interested in keeping the body of the original revision, we would have to create a new
document bale for the new revision. Of course, a tie should be created between the

original document and the revision indicating the relationship between the two.

4.3 Collections

Another class of objects that could possibly warrant a special representation is that
of collections. Among the examples given on page 38, a tar archive, a directory and
an HTML document can be considered collections: a tar archive has associated with
it a collection of files that it includes, a directory has associated with it a collection of
files that it contains, and an HTML page has associated with it a collection of URLs
to which it points.

3Due to needle immutability, the body could only change if the original body needle was replaced
by another one.

44

While some of the examples listed above are commonly viewed as collections,
HTML documents can be considered unusual. The reason for this is that a tar archive
contains its parts, while an HTML document only points to other documents. We
feel that while there is a distinction between containment and pointing (see Section
4.3.1 for a discussion of that), there are many commonalities — enough to say that
URLs linked from an HTML page comprise a collection.

It is important to understand that under a broad definition collections are not
limited to a few specific types of files. Any large amount of data must be organized to
facilitate access. All data is grouped into collections (although sometimes implicitly)
and might belong to more than one collection. Collections might be based on a variety
principles. For example, data is grouped by the area of knowledge (chapters in the
book), by ownership (all documents on a company web site) or by relevance to a
specific person/object (links from personal home page).

Thus, a great variety of documents have the potential to be considered collections.
What makes tar files and directories special is that the collection relationship has been
the explicit purpose of the document. This argues that collection relationship among
the parts should be stronger than in “implicit” collections. However, we feel that this
difference has so far been insufficient to warrant an augmentation of the data model.

Thinking about collections led us to two other interesting questions. The first
question is that of defining containment and reference. The second is that of whether
one bale can express multiple relationships. We will now address these two question

in turn.

4.3.1 Containment vs. Reference

The question of what constitutes containment and what constitutes referencing (or
pointing) is interesting for two reasons. First, it comes up in the discussion of collec-
tions. And second, the answer is needed to label ties appropriately (if distinction is
to be made in the Haystack data model).

Containment and pointing are not clearly defined with regard to many instances

encountered in real life. For example, a file system directory is often viewed to contain

45

a file, unless it is a symbolic link, in which case, the relationship is considered pointing.
Another example might be a book on-line. If a book is saved as a number of files
representing chapters, and an index file points to the chapters, we say that the book
points to its chapters. On the other hand, if an entire book is stored in a one large
file, the file is said to contain the chapters.

The two examples above present at least two reasons to argue for no distinction

between containment and pointing.

e The first example (directory) shows that containment and pointing are not
clearly defined themselves with regard to many instances occurring in real life.
While we can elaborate their corresponding definitions, this would require us to

go into great technical detail.

e The second example (the book) draws our attention to the following problem. A
single piece of knowledge (a book) can be viewed to have different relationships
among its parts depending on the way it is stored in a computer system: a
book can be stored (1) as one large file that contains the chapters, or (2) as
an index file that points to the files that store the chapters. In both cases,
conceptually, we are dealing with the same object — the book. However, it
seems that the technical details of how the books are stored affect the way in
which the book’s internal structure is viewed (containment or pointing). We
feel that a data model must represent knowledge unambiguously, which means
that different representations of the same book must be conceptually identical.

The only way to achieve this is to view containment as equivalent to reference.

Despite the reasons above not to make the distinction, Haystack continues to use
“Contains” and “References” ties according to the following intuitive definition of
these terms. A document A is said to contain document B, if the body of B could
be obtained from processing the body of A (e.g., decompressing). Everything else is

called referencing.

46

N\ () 4
(Bale Tie.DocType Needle HayMI M}EData_Tar
Tar archive
document
l/ g J \§
/—¢—\ (" N\ 4 ¢ 1\
Tie.Contains Tie.Contains Tie.Contains
o J o J \\ J
/—¢—\ (" ¢ N\ 4 ¢ 1\
Bade Bale Bae
Extracted Extracted Extracted
Document #1 L Document #2) L Document #3)
—

Figure 4-1: The Current Way of Representing Relationships

4.4 How Bales Express Relationships

The purpose of a Bale in the Haystack data model is to represent a multilateral
relationship among straws. For example, consider a bale that represents an HTML
document. In this example, we can talk about a relationship among all the documents
linked from the HTML page. We can say that all of these documents are in the
“referenced together” relationship. Similarly, for a tar archive, we could say that
all documents extracted from the archive are united by a “common containment”
relationship.

For an HTML or a tar document bale, the common reference or common con-
tainment relationship seems very significant. During the design of the data model
we considered creating a separate bale that would link all of the documents pointed
to or contained in one particular document. Figures 4-1 and 4-2 show possible rep-
resentations of a Tar archive. Figure 4-1 shows the current representation. Figure
4-2 depicts an alternative representation where one bale represents the tar document,
and another bale represents a collection of documents contained in the tar archive.

We rejected this alternative representation for two main reasons.

47

Needle.HayMIM[EData.Collection

) .
Bale Tie.DocType Needle HayMIM %Data_Tar
Tar archive
document
T
Tie.Contains
.
Bale Tie.DocType %
Collection
~
;l__|_/
/—¢—\ 'd N\ 'd ¢ N\
Tie.Member TieMember TieMember
G J . J
S R R R
Bale Bale Bae
Extracted Extracted Extracted
Document #1 L Document #2 L Document #3

Figure 4-2: An Alternative Way of Representing Relationships

48

e The biggest reason for using a separate straw is the ability to point to it. For
example, a tie requires a separate straw because sometimes we want to point to
a relationship among two other straws, not at either of the straws themselves.
In the example of a collection, the relationship of a collection is so closely tied
to the document relationship that it is unlikely that someone would need to

distinguish between the two.

e Unless somebody wants to point to the collection specifically, both represen-
tations are isomorphic in that one can be derived from another. For example,
given representation 4-1, one can infer that all documents pointed to by the
“Tie.Contains” tie are in the collection relationship. Since both representations
are equivalent functionally, and representation 4-2 is more complex, we choose

representation 4-1.

e Consider a paper that has multiple authors. We could say that these people
define a “common authorship” collection. We could also talk about a collection
of queries that match this document, etc. If we were to adopt representation

7

4-2, we would have to create bales for all “common ...” relationships or draw
the line somewhere. The latter solution would make our data model explode in
size without adding any real benefit. It would also mean special treatment for

certain relationships which is undesirable.

The last argument illuminates the following point. If in a bale several ties of the
same type are present, we can always talk about a sub-relationship among the straws
pointed to by the ties of the same type. A bale can be said to represent one complex
relationship, or to represent a number of simpler relationships. Although we could
create a data model in which one bale would correspond to exactly one relationship,
we refrain from doing so to avoid a complex data model and because under the current

data model it is still possible to derive the simple relationships.

49

20

Chapter 5

Data Manipulation Services

This chapter describes the implementation of the data manipulation services and of
the dispatcher that coordinates the work of these services. Data manipulation services
are responsible for creating and modifying the Haystack data graph. The reader
might remember from Chapter 3 that many data manipulation services are run in
response to the events in the data model. We begin this chapter by describing the
Haystack event model and its implementation in Section 5.1. After the mechanisms
controlling the data manipulation services are understood, Section 5.2 describes the
archiving service which coordinates the process in which a document becomes a part
of Haystack. This process is called the archiving process. Next, Section 5.3 reviews the
data manipulation services that are involved in the processing of information inside
the documents. We take a closer look at the extractor services to give the reader a
deeper understanding of how the data manipulation services interact with the data
model. The last Section, 5.4, describes the implementation details of the archiving

service.

ol

5.1 Event-Driven Services and Dispatching

5.1.1 Overview

Haystack uses event dispatching to enable data manipulation services to react to
changes in the Haystack data graph. Haystack implements its own event dispatching
because Java event dispatching lacks flexibility required to support our needs. The
events are dispatched by the HsDispatcherService. Once an event occurs, the dis-
patcher service identifies services that are interested in this event and puts them in
the queue for running. The dispatcher has under its control several threads that are
used to run the services in the queue. Services use a structure called the star graph

to indicate their interests to the dispatcher.

Events

Haystack implements two main kinds of events — Haystack events and Object events.

e Haystack events occur when two straws are connected with a tie (HaystackCre-
ateEvent), or when straws previously connected are disconnected
(HaystackChangeEvent). HaystackChangeEvent is not presently used (i.e. events

of this type are not thrown and no service is interested in this event).

e Object events occur when straws are created, deleted or changed. At the present

time, none of the Object events are being used.

Thus, the only event presently used is HaystackCreateEvent. This event occurs when
a tie is created to point from one straw, called the source straw to another, called the

target straw.

5.1.2 Star Graph

The reason for having event-based services (as opposed to call-based) is the following,.
When a straw is added to the Haystack data structure, it is possible that further

information can be obtained from that straw. It is also possible that the appearance

52

of a straw may signal that information may be extracted from another straw. For
example, if a needle containing an HTML document is created, we know that certain
information (e.g. the title) can be extracted from the body needle. In this example,
the HTML field-finder service would be interested to know that such a needle has been
added. There is a large number of services that might be interested in these types
of events. Under these circumstances, an event-based model leads to a conceptually
clear code model and easier application design. In particular, under the event-driven
model, services are independent in that they do not need to know about each other.

A service needs to tell the dispatcher that the service wants to be triggered in
response to a certain change in the Haystack data graph. This is done by specifying
a star graph of interest. A star graph is an abstraction that describes a small piece

of the data graph. A general form of the star graph is the following:

Straw Root of type R
Tie of type T connecting straw Root to straw of type S
Tie of type T, connecting straw Root to straw of type Sy

Tie of type T,, connecting straw Root to straw of type S,
For example, consider the following star graph:

Straw Root of type “Bale”
Tie of type “Tie.Body” connecting straw Root to straw of type “Needle.HayFile”
Tie of type “Tie.DocType” connecting straw Root to straw of type
“Needle.HayMIMEData.HTML”

An HTML field-finder service would use this star graph to indicate its interests
to the dispatcher. When the field-finder passes the star graph in the example to the
dispatcher, it says: “Inform me when the following configuration is created in the
straw graph: a Bale that has a body of type “Needle.HayFile” and a document type
of “Needle.HayMIMEData.HTML.”

Note that each ray of a star graph consists of exactly one {tie, straw} pair. In other
words, a ray can not be “tie X; connecting straw Y; connecting tie X, connecting

straw Y5” (two pairs). The reasons that a star graph does not have more than one

93

{tie, straw} pair are that (1) there was never a need for that, and (2) supporting rays

with multiple pairs would significantly complicate the implementation.

5.1.3 How Dispatching is Done

When Haystack is initialized, all services inform the dispatcher about their interests
by registering appropriate star graphs with the dispatcher. When the configuration
of the data graph changes, the dispatcher determines whether the changed configu-
ration matches any of the star graphs. Specifically, when the HsDispatcher service is
informed that a HaystackCreateEvent has occurred, it determines whether the source
straw and its out-coming ties fit any star graph.

For each star graph sg with root R, the dispatcher does the following. The dis-
patcher examines whether the source straw'has type R. For each tie-straw pair (Tj, S;)
in the star graph sg, the dispatcher examines whether the source straw has a tie of
type T; leading to a straw of type S;. If all of these test results are positive, the
service whose interest is expressed by the star graph sg is scheduled for execution.

Note, that when the field-finder is interested in Bales with bodies of type “Nee-
dle.HayFile”, it is also interested in bales with bodies of type “Needle.HayF'ile.Text.”
The methods used to match a data graph with the star graphs need to be aware of
this. These two methods are implemented inside of the StarGraph class.?2The imple-
mentation of the star graph is fairly complicated, and the programmer needs to be

extra careful when modifying that code.

5.1.4 Running Triggered Services

After the dispatcher determines which services are interested in the event, it places the

{Service, Event} pairs into a queue for execution. The dispatcher has at its disposal

!Note that the dispatcher only looks at the star graph of the source straw and not at the star
graph of the target straw.

2Until recently star graph matching had been done using the ORO package, which implemented
regular expression matching. For a number of reasons we had to stop using ORO and matching
had to be re-implemented using Java’s String methods. The new implementation turned out to be
simpler and also more efficient.

o4

a pool of several threads which it uses to run the services scheduled for execution.
In order to avoid synchronization problems, no two services working on two events
with the same source straws should be executed at the same time. In other words,
if services A and B are in the queue to handle events that share a source straw, the

dispatcher must wait until service A is done, before running service B.3

5.2 The Archiving Process

The process of making an outside document a part of Haystack may be abstracted

into two steps.
1. Obtain the body of the document (e.g., fetch a file from a URL location)

2. Create appropriate structures in the data graph to signify the document and

the metadata. In particular,
e Create the document bale.
e Try to determine the document type (e.g. Postscript).
e Attach all the metadata existing about the document at the moment (in

the form of needles), including the document type, to the document bale.

The process outlined above is called the archiving process. Another way to define
it is: steps that Haystack must take immediately after a request to make a document?
a part of Haystack.

There are several possible scenarios in which an archiving process may be initiated:

e By a user, when he issues a request to the GUI to archive a file at a specified

location.

e By a service. A service can learn about the existence of an outside document

by analyzing a document already in Haystack (e.g., a directory that has already

3Note that when we say “running service z in response to the event y of type HaystackCre-
ateEvent” we mean calling method handleHaystackCreateEvent of the class with argument y.
4By “document” here, we mean a “real world” document as discussed in Section 4.2.1

95

been archived, and a service that decides to archive files in the directory). Alter-
natively, an observer service (see Section 3.2) can decide to archive a document

(e.g., a web page browsed by the user).

Also, it is possible that a service already has the body of a document, but needs to

perform step two to complete the archiving process.

5.2.1 Archiving Service

A service called HsArchive is responsible for coordinating the archiving process.> The
HsArchive service is not a very large piece of code. However, this service is crucial to
ensuring that the data graph is created in accordance with the rules of the Haystack
data model.

In order to archive a document, a user must specify its location. At the present
time there is only one kind of location — a URL location — other kinds of locations
are not foreseen in the immediate future. Thus, from now on we will assume that
location is represented by a URL. Note that a URL can specify either a remote
document, or a local file (using the “file” protocol). Also, the reader should keep
in mind that it is possible to archive a document that does not have a body (for
example, a directory).

There are two main methods in the class HsArchive, called archive and createBale.
These two methods implement steps one and two of the archiving process outlined at
the beginning of this section. The archive method obtains the body of a document,
and then calls the createBale method to create a bale and attach metadata straws
to it. Note that the method createBale can be called by any service that needs to
create a bale.

The implementation of the archive and createBale methods is relatively low-
level, compared to the rest of this section. In order to preserve the high level of

discourse, we defer the description of the implementation of these two methods until

5Qther services can bypass HsArchive and create all the structures required for a new document.
However, it is preferable that HsArchive be used for this task. Archiving a document can at times
be tricky and it is better if this job is done by a “professional” service rather than an “amateur”.

26

the end of this chapter (Section 5.4.1).

5.2.2 Type Guessing

As discussed briefly in Section 3.1.3, each document bale must attach a DocType nee-
dle. The DocType needle (e.g. the needle attached by the “Tie.DocType”) indicates
the format of the document represented by the bale. Examples of DocType needles
are “Needle.HayMIMEData.Postscript” and “Needle.HayMIMEData.Directory”. A
special DocType “Needle. HayMIMEData.Unknown” is used to indicate that the bale
represents a document whose type Haystack was not able to determine.

The DocType of an archived document is determined by a service called HsType-
Guesser. The “guesser” part in the name of the service indicates the degree of un-
certainty associated with the process of determining the type of a document. This
process is uncertain by nature because Haystack can not possibly know about all the
computer formats. However, the type guesser attempts to determine some of the

well-known formats as follows:

e [f a URL location needle is present, the type guesser extracts the file part of the
URL and, if the the file extension is present tries to determine the type based

on that (e.g. “.ps” extension means Postscript).
e [f a filename needle is present, the type guesser again looks at the type extension.

e When the body of the document is obtained through negotiations with a Web
server, the server often informs the client about the nature of the data being
transmitted (e.g. “HTML”). These data, called the MIME content type, is only
present in files that have been obtained through the Web or by email. If this is
the case with the document in question, the type guesser uses the content type

to determine the DocType.

e Finally, the type guesser has the ability to determine the DocType by looking
at the body of the document. However, such capabilities are not implemented

at the present time.

57

The type guesser tries all four of the above methods®, and assigns the appropriate
DocType if at least one succeeds. If none of the methods succeed, the DocType
“Unknown” is assigned to the bale.

The reason that we would rather have an “Unknown” DocType than no DocType
at all is that some services might be able to extract data from a document of an
“Unknown” type (e.g. a textifier service could use the “strings” command from the
Unix operating system to extract text data from a file of an arbitrary type). If
a DocType tie is missing, a service cannot determine which is true: (1) the type
guesser has not run yet, or (2) the type guesser cannot determine the document type.

There are two alternatives as to how and when the type guesser can be run. First,
it can be done the way it is implemented right now: createBale method calls the
type guesser unless the DocType is already present. Second, the type guesser could be
event-driven, i.e. the type guesser could trigger each time a new “piece of evidence”
is added to the data graph: body, location, filename or the content type. We choose

the first alternative for the following reasons:

e Since each document bale must have a DocType needle, calling the type guesser

in the createBale method ensures that the rule is observed.

e [t is possible that neither body, location, filetype nor content type ever become
available. An event-driven type guesser cannot anticipate whether an “evi-

dence” will be forthcoming, and will never be forced to assign an “Unknown”

type.

e [n practice, all four pieces of “evidence” exist by the time createBale is called.

Thus, there is no reason to wait with calling the type guesser.

It has been argued that the user should be able to alter the DocType manually
if he disagrees with the decision of the type guesser. This is problematic due to the

issue of document immutability, discussed at the end of Section 4.2.2.

Tf methods in the type guesser disagree on the answer, the type guesser picks the answer provided
by the most “credible” method. The order of “credibility” is the following: based on body, based
on content type, based on the filename, based on the location.

28

The last issue that needs clarification is what happens if we want to create a
document bale, but we have neither the body of the document, nor its location, nor
the filename, nor the content type. If this is the case, the caller of the createBale
method can either pass the DocType among the straws to attach, or pass nothing, in

which case DocType “Unknown” would be assigned to the document.

5.3 Data Processing Services

Data Processing services include field-finders, textifiers and extractors. Below is a

list of existing data processing services.

Field-Finder Services extract information from archived documents, mostly meta-
data — the title, the author, etc. At the present time, field-finder services for
the following document formats are available or being worked on:

e Latex
e HTML

Textifier Services extract text from formatted documents. At the present time,
textifier services for the following document formats are available or being
worked on:

e ASCII (dummy textifier)
e Dvips

e HTML

e Latex

e Postscript

Extractor Services extract data from documents that contain or point to other
documents. FEzxtraction here is defined broadly, and does not imply that ex-
tracted documents are contained in the parent document. Thus, although a
directory references, rather than contains its files, the service that archives files
in a directory is called an extractor. At the present time, extractor services for
the following document formats are available or being worked on:

e BABYL (Emacs mail)
e Directory

e Gzip compressed document

29

e UU Encoded

e Tar archive

Although a significant number of changes were made to the code of all of these
services, many of these changes were done to comply with modifications in other parts
of Haystack. There were no significant changes in the way field-finder and textifiers
work. Since the work of field-finders and textifiers was described well by Asdoorian
and Adar [2, 1], it is not necessary here to repeat these descriptions. However, it
would be beneficial to review the work of extractors for the following reasons. First,
extractors were virtually non-existent at the time when Adar and Asdoorian wrote
their theses. Second, many of the changes made to Haystack in the past half a year
were inspired by the problems with the implementation of extractors. These problems
stem mainly from the difficulties of interaction between the services and the data
graph. By examining the extractor services here, we can illustrate the interaction
between the services and the data graph, and prove that the current data and service
models are, in fact, workable.

Thus, in the remainder of this section, we present two extractor services, Directory
and Tar, which we believe to be representative of other extractors. Please note that
in the description of the extractors, we talk about promises and HaystackFiles. If the
reader feels that the introduction to these constructs in Section 3.3 was not sufficient,
he is welcome to read section 7.1 that gives an in-depth explanation of promises and

HaystackFile.

5.3.1 Directory Extractor

The directory extractor is an event-driven service that listens for the creation of a bale
with a DocType tie leading to a needle labeled “Needle.HayMIMEData.Directory”,
and “Tie.Location” tie leading to a needle labeled “Needle.HayURL”. When the star
graph of interest is created, the method handleHaystackCreateEvent is called. The

following is the sequence of actions taken by this method.

1. Obtain the URL of the directory from the needle that triggered the service.

60

2. Get a list of files in this directory using the Java I/O package.

3. For each file in the directory, do the following:

(a) If the file is a symbolic link, do nothing.

(b) If the file is not a symbolic link, call the archive method of the archiving
service, passing the URL of the file as the only argument.

(c) The archive method returns the HaystackID of the bale created for the
new document. Using the Persistent Storage Service, get a pointer to the

bale by its HaystackID.

(d) Attach the bale of the new document to the bale representing the directory
by the tie of type “Tie.References”.

Note that this sequence of actions assumes the successful completion of each stage.
The reader should realize that the sequence above is only a framework of what the

Directory extractor does. We can fine tune the service by creating rules of when the

files in a directory should be extracted recursively, whether we might want to archive

some files and not others, etc.

5.3.2 Tar Extractor

Tar archive extractor is an event-driven service that listens for the creation of a bale
with a DocType tie leading to a needle labeled “Needle.HayMIMEData.Tar”, and
a body tie leading to a needle labeled “Needle.HayFile”. When the star graph of
interest is created, method handleHaystackCreateEvent is called. The following is

the sequence of actions taken by this method.
1. Obtain the HaystackFile from the needle that triggered the service.

2. Run “tar -t” which outputs a list of files in the archive. Parse the output of the

command to produce a vector of file names.

3. For each of the file names do the following:

61

(a) Create a promise that would extract the file with that file name from
the HaystackFile containing the archive. Create a HaystackFile from that

promise.

(b) Create two vectors, archiveTieLabels and archiveStraws that will hold

the data to be passed to the archiving service.

(c) Create a needle with the HaystackFile that has just been created. Add the
needle to the vector archiveStraws. Also, add the label “Tie.Filename”

to the vector archiveTieLabels.

(d) Create a needle for the file name string. Add the needle to the vector

archiveStraws. Also, add label “Tie.Body” to the vector archiveTieLabels.

(e) Call the archive method of the archiving service, passing to it two vectors,
archiveStraws and archiveTieLabels. The archive method creates a

bale for the extracted document, and returns the HaystackID of the bale.
(f) Using HsPersistentStorageService, get a pointer to the Bale by its HaystackID.

(g) Attach the bale of the new document to the bale representing the tar
archive by the tie of type “Tie.Contains”.

Again, this sequence of actions assumes the successful completion of each stage.
In step (a) we created a promise to extract a Tar file and then we fulfilled that

promise in step (b). Note that the actual extraction is done in the promise.

5.4 Implementation Details

5.4.1 Archive and Create Bale Methods

This section complements Section 5.2 by describing the implementation of the archive

and createBale methods.

Archive Method
The archive method has the following signature:

62

public HaystackID archive(URL loc,
Vector tieLabels,
Vector straws,
ArchiveOptions options,
HaystackUI theUI)
throws ArchiveException

e loc is the URL location of the document to be archived

e tieLabels is the Vector of tie labels with which to attach straws

e straws is the Vector of straws to attach to the new document”

e options is the Archive Options object to direct the archiving process

e theUI is the User Interface (UI) to query for user input (a dummy UT is passed
if the user is not involved in the archiving process).

This method is implemented using the following steps:
1. Make sure that neither body nor location are present in the straws vector.

2. Check whether the location loc has been archived before. If it has, use the GUI

to ask the user whether to proceed.

3. Create a URL needle. Add it to the straws vector, and add “Tie.Location” to

the tieLabels vector.

4. If the URL has a “file” protocol (e.g., “file:///projects/thesis/almostdone”), see

if the specified location is a directory.

e [f it is, we know the document type and we know that body is not needed.
Thus, we create “Needle.HayMIMEData.Directory” needle and add it to

the straws vector, also adding “Tie.DocType” to the tieLabels vector.

e [f the specified location is a regular file, create a URL fetch promise for that
location and create a HaystackFile from that promise. Put the Haystack-
File into a “Needle.HayFile” needle. Add the needle to the straws vector
and add “Tie.Body” to the tieLabels vector.

63

5. If the URL has a protocol other than “file”, e.g. “http”, create a URL fetch
promise and create a HaystackFile from that promise. Put the HaystackFile
into a “Needle.HayFile” needle and add the needle to the straws vector, also

adding “Tie.Body” to the tieLabels vector.

6. Call the createBale method passing vectors straws and tieLabels to it.

Auxiliary archive method. Often, there are no straws to be attached to the new
bale and the default archiving options and UI are to be used. As a matter of con-
venience, another archive method exists overloading the “main” archive method.
The auxiliary archive method takes only one argument — the location. It then calls
the “main” methods, passing empty vectors in place of straws and tieLabels, and

default ArchiveOptions and Ul in place of the options and theUI arguments.

Create Bale Method

The method has the following signature:

public HaystackIDs archive(Vector tieLabels,
Vector straws,
throws ArchiveException

e tieLabels is the Vector of tie labels with which to attach straws

e straws is the Vector of straws to attach to the new document

Note that the elements of straws and tieLabels vectors should be in direct
correspondence, i.e. the i straw in the straws vector should be attached with the
tie whose label is the i"* element of the tieLabels vector. The following is done by

the createBale method:

1. Create a new bale.

"This might not be the cleanest way to pass {tie, straw} pairs to the method, but it is by far the
simplest in terms of implementation.

64

2. Create a needle with the current time and attach it to the bale using a “Tie.CreationDate”

tie.

3. Attach all straws from the straws vector to the bale using ties with the labels

specified in the tieLabels vector.

4. If a “Tie.DocType” tie is not in the vector tieLabels (i.e. the DocType is
unknown), run the type guesser and attach the result with a “Tie.DocType” tie
to the bale. If the type guesser fails to determine the type, the type “Unknown”

is used. (see next Section 5.2.2).
5. The HaystackID of the bale is returned to the caller.

An ArchiveException is thrown if vectors straws and tieLabels have different sizes.

There are two advantages to a process in which first, all the needles to be attached
to the bale are created, and then, all of them are attached. The more obvious ad-
vantage is that this adds to the conceptual simplicity of the code. The less obvious
advantage is that we do not attach needles until we are sure that all other operations
completed successfully, adding to the robustness of the process. If needles were at-
tached one by one, and a failure occurred in the middle of the archiving process, we
would be left with a structure that is partially complete yet missing some important
components, which is undesirable.

What the second part of the previous passage was essentially saying is that we
want bale creation to have the properties of a transaction. In other words, we either
want a complete bale or nothing. In general having transaction capabilities could
be very useful in Haystack. However, given that (1) nothing terrible would happen
to Haystack if an operation, such as bale creation, is only partially complete, and
(2) transactions are expensive and non-trivial to implement, it remains to be seen

whether Haystack would ever employ transaction mechanisms.

65

66

Chapter 6

Profiling

Per-user customization has been a cornerstone of Haystack since inception. As part
of these efforts, Haystack needs a means of expressing user interests and document
relevance to these interests. These needs are addressed by using word-frequency
profiles, a standard solution to these kinds of problems. A package of utilities has
been implemented in Haystack to allow the computing and storing of word-frequency
profiles. We begin this chapter by discussing the theory behind profiling in Section
6.1. The rest of the chapter describes the implementation of profiling in Haystack.
The reader can refer to Section 8.1.1 in the chapter on future work for the examples

of how profiles can be used.

6.1 Theory Behind Profiling

In order to evaluate the relevance of a document to user interests, we need to find a
way to express these interests. Haystack makes an assumption that a user’s personal
files (and the documents she accesses on the Web) reflect on the interests of the user
(e.g. a doctor will have many medicine-related files). Thus, a user’s interests can be
induced from the collection of her documents.

We need a way to express the contents of a document or a collection of documents
to compare them to the contents of other documents. Information Retrieval relies

heavily on the assumption that documents with similar contents use similar words,

67

i.e. same words will occur in both documents with a similar distribution of frequencies.
To represent the contents of a document, we can compute its countfile, i.e. a histogram
of words and their frequencies in the document. Similarly, by computing a countfile of
a collection of documents, we can hope to express the contents of the entire collection.

The simplest way to measure the similarity between two countfiles is to compute

their dot product:

Lusew Ji(w) fa(w)

where W is the set of all words that occur in both documents, and f;(w) is the number
of times word w occurred in document 7. If this formula is used, countfiles with few
common words would produce few non-zero summation terms, whereas countfiles with
many common words would have many non-zero terms, and produce a larger result.
Of course, there are many ways to improve the effectiveness of that formula, e.g. by
normalizing. Since the details of the dot product formula may vary depending on the
intended use, we will leave these details out of the discussion.

There are many ways to represent the contents of a document, the countfile being
one of them. Depending on the intended use, a countfile may be modified (reduced
in size, frequencies slightly changed) to improve its effectiveness for the task. We call
such a modified version of