
A Data Model for the Haystack Document

Management System

by

Ilya Lisanskiy

Submitted to the Department of Electrical Engineering and

Computer Science

in partial ful�llment of the requirements for the degree of

Bachelor of Science in Computer Science and Engineering

and

Master of Engineering in Electrical Engineering and Computer

Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February ����

c� Ilya Lisanskiy� MCMXCIX� All rights reserved�

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis

document in whole or in part�

Author �

Department of Electrical Engineering and Computer Science

February �� ����

Certi�ed by �

David R� Karger

Associate Professor

Thesis Supervisor

Accepted by �

Arthur C� Smith

Chairman� Department Committee on Graduate Students

A Data Model for the Haystack Document Management

System

by

Ilya Lisanskiy

Submitted to the Department of Electrical Engineering and Computer Science
on February �� ����� in partial ful�llment of the

requirements for the degree of
Bachelor of Science in Computer Science and Engineering

and
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Haystack is a novel personal information management system whose goal is to pro�
vide an intuitive interface to a user�s documents� This thesis describes the author�s
e	orts to advance the system in several directions� First� we analyze the problem of
metadata representation and present a data model based on a directed graph struc�
ture� The data model is highly
exible in expressing relationships among data� In
the course of this thesis we attempt to de�ne a document and o	er our vision on this
subject� Second� this thesis describes a substantial redesign of the Haystack system�
In particular� we describe the new implementation of the services involved in the
archiving process� Finally� we describe an implementation of a tool that enables the
creation of word�frequency pro�les that the Haystack system can use to adapt to the
user�

Thesis Supervisor� David R� Karger
Title� Associate Professor

�

Acknowledgments

I would like to thank� �rst and foremost� David Karger� my thesis supervisor� During

the past few months� David has been a great source of guidance and I have come to

appreciate his abundance of ideas� optimism and unintrusive management style�

Haystack has been a team e	ort and I am indebted to all the people who have

contributed in some way to the Haystack project� Professors David Karger and

Lynn Stein� and students Eytan Adar� Mark Asdoorian� Yana Ageeva� Damon Mosk�

Aoyama� Aidan Low� Christina Chu� Eric Prebys� Orion Richardson� Jing Qian and

others� I owe extra thanks to Damon with whom I worked closely and who contributed

much time to the work presented in this thesis�

I would also like to express gratitude to my parents� my sister Asya� and the rest

of my family� for their love� guidance and support�

I thank my friends Boris Raykin� Mike Bryzek and Dani Katz for proofreading my

thesis� Finally� I would like to thank Natasha Skorodinsky whose fun company� along

with the company of the three people above� made the past few months an exciting

and enjoyable experience�

�

Contents

� Introduction ��

��� Haystack Project �

��� Implementation ��

�� Goals of This Project ��

��� About This Thesis ��

� Background and Related Work ��

��� Background ��

����� Information Retrieval ��

����� Metadata and Its Use in Haystack � � � � � � � � � � � � � � � � ��

��� Related Work ��

����� Metadata Representation ��

����� Information Retrieval ��

���� Knowledge Representation ��

����� Other Related Work �

� Introduction to Haystack ��

�� The Data Model ��

���� The Data Graph and Straws ��

���� Straw Typing ��

��� Straw Subtypes� Needles� Ties and Bales � � � � � � � � � � � � ��

�� Services �

���� Data Manipulation Services �

�

���� Information Processing Services � � � � � � � � � � � � � � � � �

��� System Services �

� Other Implementation Features �

� Discussion of the Data Model ��

��� Goals of the Data Model �

��� Representing Documents �

����� What Is a Document� �

����� Why a Document Is Represented by a Bale� � � � � � � � � � � ��

�� Collections ��

���� Containment vs� Reference ��

��� How Bales Express Relationships ��

� Data Manipulation Services ��

��� Event�Driven Services and Dispatching � � � � � � � � � � � � � � � � � ��

����� Overview ��

����� Star Graph ��

���� How Dispatching is Done ��

����� Running Triggered Services ��

��� The Archiving Process ��

����� Archiving Service ��

����� Type Guessing ��

�� Data Processing Services ��

���� Directory Extractor ��

���� Tar Extractor ��

��� Implementation Details ��

����� Archive and Create Bale Methods � � � � � � � � � � � � � � � � ��

� Pro�ling ��

��� Theory Behind Pro�ling ��

��� Representing Pro�les ��

�

����� The Pro�le Class ��

����� The WordIDMap Class ��

�� Computing Pro�les ��

��� Pro�ling Service and Utilities ��

����� Storing Pro�les ��

����� Viewing Pro�les ��

� System Design ��

��� Promises and Haystack File ��

����� Promises ��

����� Haystack File ��

���� Promise Cache ��

��� System Services ��

����� Hayloft Management Service ��

����� Resource Control Service ��

���� Object Creator Service �

�� Implementation of Straw Typing ��

	 Tasks for the Future 	�

��� Future Developments ��

����� Applications of Pro�ling ��

����� User Interface Improvements ��

��� Fixing Existing Implementation Problems � � � � � � � � � � � � � � � ��

����� Robust Shutdown ��

����� Dependence on the ORO Package � � � � � � � � � � � � � � � � ��

���� Database Management ��

 Conclusion
�

A Data Model Implementation
�

A�� Needles ��

A�� Ties ��

�

A� MIMEData Types ��

�

List of Figures

�� Data Graph Example ��

�� Data Graph Example with Complete Straw Types � � � � � � � � � � � ��

��� The Current Way of Representing Relationships � � � � � � � � � � � � ��

��� An Alternative Way of Representing Relationships � � � � � � � � � � � ��

�

��

List of Tables

A�� Needle Types ��

A�� Tie Types ��

A� MIME Types ��

��

��

Chapter �

Introduction

Today� anybody who has access to a networked computer will testify to the awesome

amount of available information and the frustration and pain of managing it� Indeed�

�nding a needed document� be it an email message or a web page� is often a time�

consuming� if not an impossible task� A common approach to this problem is the use

of tools that make it possible to search for documents by using key words� However�

this approach is inadequate because people tend to associate documents with meta

information� such as the author or the date� which is ignored or used poorly by most

search tools� In addition� existing document management tools are unable to adapt

to a speci�c user and lack adequate user interfaces�

��� Haystack Project

The Haystack project is an attempt to create a personal document management

system that would address all of the above issues� Haystack utilizes the techniques

already available to computer scientists and also innovates in a number of ways�

The Haystack system is built on top of an Information Retrieval �IR� engine that

allows indexing and searching of textual information� In addition to indexing a user�s

documents� Haystack collects and structures metadata about these documents� The

discovery of an information structure creates an opportunity for novel approaches

to presenting information� Finally� the ability to access a user�s documents and to

�

monitor ways in which these documents are accessed� enables the creation of an

intelligent system that can adapt to the user�

��� Implementation

Haystack project was launched two years ago� and its development proceeded in

several stages� The �rst version of Haystack was implemented in Perl� Although the

initial results were encouraging� Perl proved to be vastly inadequate to the needs of

a large data�oriented system� Consequently� a second version has been implemented

using Java� The new Haystack system has a powerful design that takes full advantage

of Java�s object oriented paradigm�

Haystack Design

One of the strengths of Haystack lies in the data structure used to store information

about documents� This structure consists of a directed graph� in which nodes can

represent both data and relationships between the data� Haystack de�nes its own

notion of a Haystack Document as an aggregation of a document body and metadata�

In the Haystack data graph� the Haystack Document and its body are represented

by di	erent nodes� Once a document becomes part of Haystack� a number of services

take on the task of extracting all useful information from it and fully integrating the

document into Haystack�s data graph�

��� Goals of This Project

At the time when the author joined the Haystack project� substantial parts of the

Haystack design and implementation were completed� However� a number of design

issues remained unresolved and the implementation was not su�ciently robust� Both

of these problems prevented further development of Haystack� The goal of this project

was to address the existing problems and to extend Haystack�s capabilities�

The initial stage of the Haystack design� described by Adar and Asdoorian ��� ��

��

laid down the foundation of the Haystack data structure� This framework� also called

the data model� sometimes lacked the speci�city required to enable the cooperation

of multiple services in the system� Many fundamental issues behind the data model

were left unanswered� There were both a practical need and a theoretical interest to

further explore the principles of the data model� In the course of the past few months�

we deepened our understanding of the data model and made the necessary changes

in the code to re
ect this new understanding� This thesis describes these e	orts and

their results� It also discusses the reasoning behind the current data model�

Another major challenge of the project was to enhance the system robustness and

to add new services� Since Haystack needs to manage a large amount of data� the

system requires sophisticated software structures� Some of these structures existed

and some needed to be created� A signi�cant amount of work has been done to

improve the Haystack system� This thesis describes this work and the parts that

were added or signi�cantly modi�ed�

Finally� until recently� Haystack lacked the technology to support adaptation to

users� As a means to tackle this task� we implemented the capability to create word�

frequency pro�les of a single document� a group of documents� or an arbitrary collec�

tion of text data� A word�frequency pro�le is a summary of a document�s contents�

which can be easily manipulated� compared to other pro�les� etc� This thesis pro�

vides a description of the service and the structures that were created to support

word�frequency pro�ling�

��� About This Thesis

Audience

This thesis is primarily intended for two groups of readers� First� it is intended for the

computer science researchers and professionals who want to learn about the Haystack

project and its results� Second� it is designed for the present and future developers

of Haystack� The latter necessitates the inclusion of technical details not normally

found in scienti�c publications�

��

The Structure of This Document

In order to accommodate as wide an audience as possible� this thesis provides some

background on information retrieval and metadata storage� Chapter � provides this

information and puts the project into the context of work done by other researchers�

Chapter introduces the Haystack system� its data model and services� Chapter

� discusses several conceptual issues having to do with the representation of docu�

ments in the Haystack data model� Chapter � reviews the implementation of data

manipulation services in Haystack� followed by Chapter � on the implementation of

word�frequency pro�ling� Chapter � describes a number of internal data structures

and services that are needed to enhance Haystack�s robustness or improve perfor�

mance� Chapter � outlines some of the tasks that lie ahead of Haystack developers

in the near future� Chapter � summarizes and concludes this thesis�

Other Contributors

The work described in this thesis is the result of a collaborative e	ort of many mem�

bers of the Haystack group� in particular� the leader of the group� Professor David

Karger� and the two students responsible for the original design of Haystack� Eytan

Adar and Mark Asdoorian� This thesis builds upon the constructs developed by these

people� In addition� many insights about the data model came as a result of discus�

sions that involved the entire Haystack group� Finally� parts of the implementation

work were a result of collaborative e	orts of Damon Mosk�Aoyama and the author�

��

Chapter �

Background and Related Work

The Haystack project borrows its techniques from a number of computer science

�elds� some of which require brief introduction before we can proceed to describe the

Haystack project� Section ����� introduces information retrieval� followed by Section

����� that discusses the notion of metadata and how it is used in Haystack� Finally�

Section ��� reviews related work in the �elds of IR� metadata representation and

knowledge representation�

��� Background

����� Information Retrieval

Information retrieval �IR� refers to retrieving documents or texts with information

content relevant to a user�s information needs� Information retrieval includes two

related� but di	erent activities� indexing and searching� Indexing refers to the way

documents and requests are represented for retrieval purposes� Searching refers to the

way the �les are examined and the items relevant to a search query are extracted� The

two activities of indexing and searching have formed the focus of most of the research

that has been carried out by the IR community� However� there is now increasing

interest in complementary studies of the ways that people use IR systems and how

user�system interactions should be organized to facilitate e	ective retrieval� While

��

indexing and searching are central to automated retrieval� they can support other

forms of retrieval� such as browsing� which can also be enhanced by sophisticated

visual presentation�

The Haystack project goes beyond basic indexing and retrieval and focuses on

developing advanced data representation and visualization techniques� Haystack uses

an o	�the�shelf search engine� called ISearch ���� to implement basic indexing and

retrieval� We sometimes refer to this search engine as the �underlying IR system��

Haystack does not rely on any features speci�c to ISearch � so that this search engine

can be easily substituted by another�

����� Metadata and Its Use in Haystack

A key feature of a good document system� such as Haystack� is the ability to represent

information about documents and to express inter�document structure� Information

about documents is calledmetadata� For example� a very important piece of metadata

is the data format in which a document is stored �e�g� Latex� MS Word� plain text��

Other examples of metadata are the document author�s� and the creation date� A

user�s annotation to a document is also considered a piece of metadata� This section

discusses brie
y the use of metadata in Haystack and then reviews related work on

metadata representation�

Metadata can come from a variety of sources� It can be passed along with a

document when the document is archived� It can also be extracted from the document

�e�g� a title of an HTML page can be identi�ed by an appropriate HTML tag�� Finally�

metadata could be generated by the owner of the document� as in the case of the user

attaching a note with comments�

There are at least two ways in which Haystack uses metadata� First� metadata

is used to search for a document� The IR system indexes metadata along with the

text of documents� When a user queries Haystack to �nd a document� the ability to

search metadata augments the user�s ability to identify the desired document and to

�lter out undesirable ones�

The second way in which Haystack uses metadata is to establish relationships

��

among the user�s documents� The fact that two documents have the same author im�

plies a relationship between the two documents� and the Haystack data model makes

it possible to capture this relationship� Similarly� if two web pages were visited one

after another� it might be indicative of a connection between the two and this infor�

mation should be recorded� Relations among the documents can also be considered

metadata� The presence of relationships among the documents may be helpful to

many tasks� including browsing the data graph to �nd a desired document�

��� Related Work

����� Metadata Representation

There have been a number of projects that address the use and representation of meta�

data� Most of these projects look at metadata from the point of view of information

�ltering or document transmission over the web�

One of these projects� the Resource Description Framework �RDF� ���� is an e	ort

of the World Wide Web Consortium �WC� to create an infrastructure to enable

encoding� exchange and reuse of structured metadata� RDF is an extension of XML

that creates a syntax that can be used to express metadata about the documents on

the Web� RDF does not de�ne any metadata � instead� it allows interested parties

to create metadata schemas and de�ne metadata semantics�

One of the applications of RDF is the Dublin Core Metadata Element ���� which

de�ned �fteen standard �elds to be used to describe a generic on�line document �e�g�

title� author� language�� The primary objective of the Dublin Core project is to

facilitate discovery of electronic documents on the Web�

There are several key di	erences between how metadata is handled by RDF�Dublin

Core and the Haystack data model� First of all� Haystack does not impose any

schemas on its data model� In other words� Haystack does not limit the kinds of meta�

data that can be associated with a document� Haystack does not have to follow the

formal approach for representing metadata taken by the RDF�Dublin Core because

��

Haystack is not concerned with the ability to share metadata with other users� and

distribute it over the Web� The lack of such ability is� of course� a disadvantage��The

upside is that we can a	ord a
exible and informal data model � word searching does

not require that semantics be de�ned and the human user� when browsing the data

graph� is capable of extracting meaning from di	erent syntactic constructs himself�

While most metadata models aim to allow authors to annotate documents with

metadata for the purpose of document distribution� Haystack is not concerned with

information transfer� Rather� Haystack�s concern is to represent the metadata in a

way that would make browsing the document space as convenient as possible� Hence�

Haystack can a	ord a highly�
exible data model� without being concerned about

standardization�

A number of metadata representation systems target speci�c� goal�oriented kinds

of metadata� An example of such a system is PICS� which stands for the Platform

for Internet Content Selection ���� PICS is an Internet�based technology that gives

Internet users control over the kinds of material to which they and their children have

access� PICS makes it possible to label Internet documents� Labels can provide any

kind of descriptive information about Internet documents� in particular they make it

possible to rate a document according to its appropriateness for viewing by children�

PICS is an information �ltering tool that enables users to �nd documents with

the appropriate content� In this� the goals of PICS represent a subset of the goals of

Haystack� In addition to improving search� in Haystack� metadata creates a linkage

among the documents which provides a way for the user to �nd a document by

browsing the document net�

Another system related to Haystack was developed at the Stanford University

and is called Lore ���� Lore is a database management system speci�cally designed

for managing semi�structured information �i�e� structure is not schema�based�� In

this� Lore�s data model is similar to that of Haystack�

Finally� there are a number of commercial document management systems that

�Note that given a set of metadata� Haystack could use RDF to de�ne an appropriate schema
and distribute it to other users�

��

allow a user to annotate and connect related documents �e�g�� ����� Usually� the role

of metadata in these systems is marginal� and a system does not actively seek to

expand the metadata set or use it to create inter�document structure�

����� Information Retrieval

Information Retrieval is relevant to Haystack in two ways� First� Haystack needs

to enable the user to search documents and metadata� To this end� Haystack uses

an external search engine �ISearch� ����� Haystack does not attempt to improve the

performance of an IR system per se� Instead� Haystack tries to make an IR system

more useful to the user by enabling the user to search not only the document itself�

but also metadata�

Traditional IR systems �e�g�� ��� ���� lack the ability to customize their behavior

to a user� Haystack attempts to make up for that weakness by using IR techniques

to implement user customization� This is the second way in which IR is relevant to

Haystack� A number of academic projects attempted� with various degrees of success�

to combine IR techniques with user customization� Stanford University researchers

created a system �� which learned about a user�s preferences by having the user rate

presented web pages� The system could then �nd more web pages of interest to the

user� Another project in this direction was undertaken by a group at UC Irvine �����

The Stanford and UC Irvine systems used the vector�based model� a standard for IR

systems �e�g�� ������ to represent user interests� Haystack takes a similar approach to

representing user interests �see Chapter ��� but is di	erent in that it learns about the

user from observing the documents in her possession and the documents she accesses

on the Web� Note that the role of a Haystack user in the learning process is passive�

unlike that of a user of the Stanford or UC Irvine systems� who is required to be

active in order for a system to learn�

��

����� Knowledge Representation

Haystack can be considered a knowledge representation �KR� system� Unlike a general

knowledge representation system� Haystack is primarily interested in knowledge about

documents� Knowledge about non�documents� such as people� can also be represented

in the Haystack data model� but the primary purpose of this knowledge is to serve as

an intermediary in establishing relations among documents�

Although Haystack was not designed to be a pure knowledge representation sys�

tem� classical texts on this �eld describe structures similar to those of the Haystack

data model� For example� Reichgelt ��� describes a semantic net as a graph consist�

ing of nodes and links� Links are unidirectional connections between nodes� Nodes

correspond to objects� or classes of objects� in the world� whereas links correspond to

relationships between these objects� This sounds very similar to what Haystack does�

with nodes and links corresponding to Haystack needles and ties�

One of the major di	erences between the classical KR systems and Haystack

is that these systems deal with data at much �ner granularity than Haystack� A

node in a KR usually represents a small piece of data� whereas in Haystack a large

number of nodes are document bodies� A document� sometimes very large in size�

is an aggregation of a large amount of unstructured data� We feel that �document�

level granularity is appropriate for Haystack due to an end�to�end argument �����

Documents are Haystack�s input as well as its output �Haystack �nds the document

for the user� and the user �nds needed information in the document herself�� Thus�

there is usually no need to arti�cially break up documents into smaller pieces for the

sake of representation��

�There are exceptions to this statement� It might be convenient to break a book into chapters
because excessively large quantities of data are impractical in many respects� including that of
information retrieval� In fact� the issue of the right degree of granularity at which data should be
indexed� represented or returned to the user presents an interesting research topic�

��

����� Other Related Work

An interesting project� parts of which are related to Haystack� was conducted by

Sheldon ����� The project creates an architecture for information discovery based on

a hierarchy of content routers that provide both browsing and search services to end

users� The end user is presented with a document space that bears some similarities

to that of Haystack� For example� documents in this system are organized in a tree

structure� There is also an object representing a collection of related documents�

which is something we considered �and rejected � � in the design of the Haystack data

model�

�See Section ��� to �nd out why��

�

��

Chapter �

Introduction to Haystack

This chapter gives a high�level description of the Haystack implementation� The

chapter consists of the following three parts� The �rst part introduces the Haystack

data model� i�e� the structures used to represent documents and other knowledge� This

part is followed by a review of services� i�e� functional components of Haystack� The

last part familiarizes the reader with several features of the Haystack implementation

that fall outside the scope of the �rst two parts but are still needed to understand

the remaining chapters of this thesis�

��� The Data Model

����� The Data Graph and Straws

All information about documents is represented as a directed graph� sometimes re�

ferred to as the Haystack data graph� The nodes in this graph are called straws�

Straws subdivide into three subtypes� needles� ties and bales� A needle represents a

piece of �raw data�� A needle is basically a wrapper around a Java object� such as a

string or a number� A needle can also wrap around a �le� A tie represents a directed

relationship between two straws� For example� if straw A represents a document and

straw B represents the person who wrote that document� an �Author� tie connecting

A and B could be created to represent this relation� The reason that relations are

��

Person

Bale

Author

Tie

Title

"Master’s Thesis"
String:

Needle

Tie

document text
File that contains

Needle

Body

Tie

Latex Type

Needle

Document Type

Tie

Document

Bale

Figure ��� Data Graph Example

represented as independent nodes in our data graph is that we might want to point to

or annotate a relation� For example� if a user creates a tie between two documents to

indicate that they are related� he can attach to the tie a String needle with an expla�

nation of why the tie was created� Finally� a bale represents a complex relationship

among multiple straws� For example� a bale can be used to represent a document�

a person or a query� These objects usually comprise several parts� For example a

person object can combine the person�s name� address and the date of birth� A bale

is a centerpiece that connects these parts and represents their aggregation� Needles�

ties and bales are basic constructs that could be used to represent any knowledge�

including knowledge about documents� Note that the pointers that connect the nodes

in the data graph do not carry any semantic information� Instead� if a relationship

needs to be expressed between two straws� a tie is used to connect the straws and

express the nature of the relationship�

Figure �� shows an example of a data graph used to represent information about a

document� In this example� the document is a Master�s thesis stored in LaTEX format�

Each box in the �gure represents a straw� At the top of each box is the primary type

��

Needle.HayMIMEData.Latex

Bale

Document

Tie.DocType

Document Type

Latex Type

Tie.Body

Body

Needle.HayFile

Tie.Title

String:

Title

Tie.Author

Author

Bale

Person

"Master’s Thesis"
File that contains
document text

Needle.HayString

Figure ��� Data Graph Example with Complete Straw Types

of that straw� and at the bottom is a description of what the straw represents� Note

that the bale representing the document and the needle representing the body of the

document are di	erent entities� The body refers to the actual text of the document�

Besides the body� other information is present about the document� namely� its type

�LaTEX�� title ��Master�s Thesis�� and the author� represented by a person bale�

����� Straw Typing

Every node �straw� in the Haystack data graph must belong to one of the above�

mentioned subtypes� a needle� tie or bale� These subtypes can further subdivide into

sub�subtypes� so that straw types form a hierarchy similar to that of Java types� The

type of a straw is expressed by a string� called a label� Examples of type labels are

�Bale�� �Tie�Author� and �Needle�HayFile�Text�� The supertypes of a straw type

can be derived from its label� For example� a straw labeled �Needle�HayFile�Text� is

a subtype of �Needle�HayFile�� which in turn is a subtype of �Needle�� Each straw

has a type label� The label is a �nal authority on the type of that straw� In the

remainder of this thesis we will use the terms �label� and �type� interchangeably�

��

Figure �� shows the same graph as in the previous example ����� except that

the straw types are speci�ed completely�

����� Straw Subtypes� Needles� Ties and Bales

Needles and Ties

In example �� the needles represent �raw data� and the corresponding ties express

the signi�cance of the needles� To illustrate this distinction� consider the needle on

the right containing the string �Master�s Thesis�� Its role in this graph is to express

the title of the document� We could imagine a second document� a very short one�

that consists of only two words� �Master�s Thesis�� The very same needle could serve

as a body of that second document and be connected by a �Tie�Body� tie to the

second document�

By having needles and ties� we can represent �raw data� and signi�cance of data

separately� Nothing about a needle should ever express the signi�cance of the data

in it� The needle label indicates the nature of the Java object encapsulated by the

needle� The tie label indicates the type of relationship �signi�cance� expressed by the

tie�

In light of the above� I would like to explain a writing convention that might

be confusing to the reader� We demonstrate it using the example in �gure ��� In

that example� we may sometimes write about the �Needle�HayFile� �middle at the

bottom� as the �body needle�� The word �body� in this phrase is used to identify a

needle by its signi�cance in the context of the document bale� Use of the term �body

needle� should not be interpreted as an expression of some inherent property of that

needle�

There is no prede�ned set of tie labels and a user can create ties with arbitrary

labels� The only important thing about a tie label is that the party that creates a tie

and the party that uses the tie have to agree on the meaning of the label�

The fact that the Haystack data model allows the user to create a data graph of

an arbitrary structure sets the Haystack data model apart from the data model of a

��

relational database� in which a schema precludes a user from dynamically changing

the structure used to connect the data �tables��

Immutability of Needles A needle encapsulates a piece of data �a Java object��

Once a needle is created� the data may not be changed� The reason for this restriction�

called needle immutability� is that Haystack might create other straws that point to

the needle� or whose data is derived from the data in the needle� If we change the

data in the needle� other straws or pointers might become incorrect� We choose not

to change the data under the pointers�

Needle Uniqueness All needles in Haystack are unique� in that there are no two

needles that encapsulate two identical Java objects� There are two reasons why needle

uniqueness is desirable� First� Haystack strives to discover all possible relations among

the elements of the data graph� If two needles have the same data� this implies a

relation between the two� Of course� we could create a tie between them� but merging

the two needles is even a simpler solution� For example� if two documents have the

same title� the documents would be connected through the needle encapsulating the

string with the title�

The second reason for needle uniqueness is the conservation of space� Although

it might not matter for needles of small size� it would de�nitely be wasteful to store

two large �le needles with identical data�

Note that if for some reason Haystack did not merge two identical needles� that

would not break Haystack or its data model� Needle uniqueness is a nice feature

to have� Without it Haystack would still function� although its usefulness would be

reduced�

Bales

We defer the general discussion of bales until the next chapter� However� there is

one feature of bales representing documents that we must introduce now� If a bale

represents a document� it must attach a �Tie�DocType� tie leading to a needle that

��

expresses the format in which the document body is encoded� e�g� Postscript� The

DocType is an important piece of a document�s metadata� The signi�cance of the

DocType will become apparent as this thesis progresses�

��� Services

The functional part of Haystack is implemented by services� A service is a functional

Java class with a clearly de�ned set of duties� A service can either run at all times�

or can be called in temporarily when needed� There are over a hundred services in

Haystack that carry on a variety of duties� ranging from archiving and processing

documents� to indexing and searching the data graph� to helping other services�

The services are bootstrapped by a module called the HaystackRootServer� This

module is responsible for initializing� running and stopping services� We refer the

reader to the Appendix A�� of ��� for an in�depth discussion of the HaystackRoot�

Server�

The goal of this section is to familiarize the reader with the services that will be

relevant in the course of this thesis� It is not our goal to provide a comprehensive

review of services on Haystack� Such a review can be found in ���� The three main

groups of services that we consider in this section are�

Data manipulation services archive documents� extract information from them�

and put these data into the Haystack data graph�

Information processing services extract information from documents and create

structures that could be used for user interface tasks� The services create word�

frequency pro�les� index �les for searching� etc� Unlike the services in the

previous category� information processing services do not modify the data graph�

System services assist other services in their duties� carry out a variety of system

tasks �e�g� interacting with the database�� manage the Haystack �le repository�

etc�

�

Other major groups of services in Haystack are the interface� observer and com�

munication services� Interface services are responsible for the user interface� At

the present time three user interfaces are available� web based� windows�based �im�

plemented in Swing� and command�line� Observer services track the user�s web

browser� SMTP mail client and other gateways to actively archive user documents�

Communication services are responsible for inter�Virtual Machine and and inter�

Haystack communication� These parts of Haystack functionality fall outside the scope

of this thesis�

Before we proceed to describe services in greater detail� it is worth mentioning

that Haystack outsources some functionality to database management and IR sys�

tems� Haystack employs a database management module to persistently store its

data� Haystack also uses an o	�the�shelf IR system to index and search textual data�

����� Data Manipulation Services

Services in this group are responsible for creation and manipulation of the Haystack

data graph� The following services comprise the group�

The Archive service coordinates the process in which a document becomes part of

Haystack� e�g� creates a document bale and attaches needles with the metadata�

Fetch services fetch the body of a document given a location� For example� a URL

fetch service obtains the �le speci�ed by a URL�

The Type Guesser service determines the type of a document �e�g� Postscript�

when the document is archived�

Extractor services extract data from documents that contain or point to other

documents� For example� a Gzip extractor uncompresses Gzip documents and

makes the decompressed �le a part of Haystack�

Field�Finder services extract information from archived documents� For example�

a Latex �eld��nder extracts the title� the author and other metadata from a

Latex document and attach appropriate needles to the document bale�

�

Texti�er services extract text from formatted documents� For example� the HTML

texti�er gets rid of the formatting information in an HTML document �tags��

The process of extracting text from a document is called texti�cation� When a

texti�er service completes its work� the extracted text is placed into a needle

which is attached to the document bale�

Similarity services identify similar documents� For example� the Similar Text ser�

vice identi�es documents with nearly identical text and connects the two doc�

ument bales with an appropriate tie�

Many data manipulation services work by reacting to changes in the data graph�

A service can indicate that it is interested in a change of a certain kind� When that

change occurs� an appropriate event is generated� A dispatcher service� called Hs�

Dispatcher� noti�es interested data manipulation services of the event� which triggers

the services to execute� For example� an HTML �eld��nder service wants to be called

when a bale is created for an HTML document� At the time of initialization the

HTML �eld��nder service speci�es a structure� called a star graph� that expresses

the pattern in the data graph that should trigger the service� This star graph is

then passed to the dispatcher service� The dispatcher service keeps track of changes

made to the data graph and� in the event that a pattern expressed by the star graph

emerges� noti�es the HTML �eld��nder of this event�

Data manipulation services may create chain reactions� in which addition of straws

to the data graph by one service triggers other services to run� The chain reaction

stops when all possible information is extracted and this information is put in the

data graph�

Example� Data Manipulation Services in Action

The work of data manipulation services is best illustrated in action� Thus� we will

describe a sequence of actions that Haystack takes upon a user�s request to archive

a document� Although this description does not include all of the data manipulation

services� it should be of interest to the user in its own right because much of what

�

is described in this thesis was meant to improve the process below in one way or

another�

In this example we describe what happens when a user issues a request to archive

an HTML document at a speci�ed URL�

�� The archiving service is given a URL location of a document� the Archiving

service calls the URL fetch service to obtain the body of the HTML document�

�� The Type Guesser service is called to determine the type of the fetched docu�

ment� Based on the ��html� extension in the URL� the type guesser determines

the type to be �HTML��

� The archiving services creates a bale to represent the document� and attaches

metadata needles �location� document type� to the bale�

�� An HTML �eld��nder service reacts to the creation of a bale with document

type �HTML�� The �eld��nder extracts metadata from the body of the HTML

document �title� author�� puts the metadata into needles and attaches these

needles to the document bale�

�� An HTML texti�er service reacts to the creation of a bale with document type

�HTML�� The service removes HTML tags from the body of the document� puts

the result into a needle and attaches the needle to the document bale using an

appropriate tie�

����� Information Processing Services

Information processing services extract information from documents for specialized

purposes� but do not make changes to the data graph� The information extracted by

the services could be used for a variety of tasks� such as searching and customizing

the user interface�

The Index Service indexes the text of documents and metadata with the underly�

ing IR system� This operation makes it possible to subsequently query the IR

system�

The HsPro�ler Service creates word�frequency pro�les of documents� It can also

create a variety of custom pro�les� e�g� a pro�le of all documents� The word�

frequency pro�les can by used for searching the documents and for other tasks�

����� System Services

System services help all other services carry out their duties� They also provide

low�level management of the straw database� Below are some of the system services�

The Object Creator Service facilitates the creation of straws and ensures that

various Haystack invariants are observed� For example� the service ensures

needle uniqueness by verifying that no two identical needles are created�

The Persistent Object Service interacts with the underlying database to persis�

tently store the data graph� The service also loads straws in memory when

needed�

The Hayloft Management Service helps other services manage the directory that

serves as Haystack�s persistent data repository� This directory is called the

Hayloft�

The Resource Control Service enables concurrency control� It provides other

services with a mechanism to lock resources to prevent race conditions�

��� Other Implementation Features

Promises and HaystackFile

In theory� Haystack aims to manage a very large amount of data� Very often Haystack

has to maintain several slightly di	erent copies of the same piece of data �e�g�� a

body of a Gzipped �original� Postscript document� a decompressed version of the

same document� and a version that has been texti�ed�� Instead of storing a piece of

data� Haystack can use an object called a promise� that contains information on how

to obtain that piece of data� For example� instead of storing an on�line document

�

internally� we can store a promise that contains the URL of that document� When

the data in the promise is needed� the promise is ful�lled� and the data is returned�

In order to abstract a piece of data regardless of whether it is stored internally or

can be obtained from a promise� Haystack implements a structure called HaystackFile�

A HaystackFile might contain either a local �le with the data� or a promise� The

HaystackFile is transparent to its possessor in that the behavior is identical in both

cases� Section ��� talks about promises and HaystackFile in detail�

Haystack IDs

In order to uniquely identify objects in Haystack� a service exists that can generate

unique IDs� called HaystackIDs� Thus� all straws and promises have unique IDs�

�

�

Chapter �

Discussion of the Data Model

Section �� of the previous chapter gave an overview of the data model� This chapter

provides an in�depth discussion of several important issues of the Haystack data

model�

Haystack is a document management system� and the goal of its data model is to

represent documents in a way that would enable the user to browse and search for the

documents in the most e�cient and intuitive manner� To this end� Haystack�s data

model makes it possible to express metadata and relations among documents� all of

which create structure among the Haystack documents� Needles� Ties and Bales are

the basic constructs that� in theory� allow us to build any knowledge system� In this

chapter� we try to understand how the knowledge about documents can be expressed

using these three types of Straws�

We begin by outlining some desired criteria for the Haystack data model in Section

���� We also give a sample list of objects that we might want to represent in Haystack�

Since documents are the most important objects in our system� they receive a lot of

attention in this chapter� Speci�cally� in Section ��� we discuss what a document is

and why a document is represented by a bale� Then� in Section �� we talk about

another important class of objects � collections� and whether they deserve a special

representation� There� we also discuss the di	erence between the relationships of

containment and reference� Finally� in Section ��� we take another look at a bale as

an encoding of a complex relationship�

�

��� Goals of the Data Model

Anything that is not a primitive type or a bilateral relation� is represented as a bale�

Unlike needles and ties� bales are very general constructs and it is not obvious exactly

how bales represent objects� To answer this question� we need to set out reasonable

expectations of the kinds of objects that we might want to represent in Haystack�

Below is a list of seven items that are representative of the objects we might want to

represent in Haystack�

� Text document

� HTML page The key feature of an HTML document is that in addition to the

text of its own� the document contains links to other documents�

� Book A large structured on�line document that can be physically represented in

many ways � as a number of �les with an index �le referencing the �les that

contain the parts �chapters�� as one large �le� etc� An interesting feature of a

book is that it represents a document� and at the same time its parts �chapters�

are signi�cant enough to be considered documents on their own�

� Tar archive Files of this type are created by a program called tar�� The purpose

of this program is to group other �les in one �le� Normally� tar �les are not

expected to be viewed directly� archived documents must be extracted before

they can be used�

� Directory A directory contains references to other �les� It may be argued that a

directory contains these �les� but this depends on the de�nition of containment�

� Query This object represents the event of a user querying some knowledge base

�e�g� web search query�� The two key parts of a query object are the query

itself �presumably a string� and the set of objects returned as a result of the

�Tar stands for Tape Archive� For more information about tar see
http���www�gnu�org�software�tar�tar�html

�

query� A query must be represented in the Haystack data model because a lot

of useful information could be derived from it�

� Person Having a representation of a person is useful because people author doc�

uments� Also� a person is an example of an object that is not a document and

it is important that the Haystack data model be
exible enough to represent

objects that are not documents��

��� Representing Documents

Documents are the most important objects represented in the Haystack data model�

This section discusses documents and the way they should be represented� First� we

need to de�ne what we mean by the word �document�� Once this is done� we explain

why bales and not needles are chosen to represent documents�

����� What Is a Document�

The word �document� can be de�ned in many ways� Webster�s dictionary de�nes a

document as �a writing conveying information� or �a material substance having on

it a representation of the thoughts of men by means of some conventional mark or

symbol��

The Dublin Core workshop de�ned document�like objects �DLOs� by example� Ac�

cording to Weibel ����� an electronic version of a newspaper article or a dictionary is

considered a DLO� whereas an unannoteted collection of slides is not� While acknowl�

edging that DLOs might include all kinds of media �images� audio�� Weibel says that

�the intellectual content of a DLO is primarily text� and that the metadata required

for describing DLOs will bear a strong resemblance to the metadata that describes

traditional printed texts��

�Haystack does not attempt to mimic the real world� However� many relationships among the
documents are derived from real world objects� and Haystack should be able to represent these
objects as well� to the degree that this representation enables the expression of relationships among
the documents�

�

We de�ne a �real�world� document very broadly� a document is a representation

or encoding of information� A document can originate in the real world � in a printed

form� or in the electronic world � in the form of a �le� In either case� before it can

enter Haystack� the document must be represented as a computer �le� called the body

of the document�

This de�nition is far from rigorous � in fact� the term document is usually un�

derstood from examples� rather than from de�nitions� Of the examples on page ��

the �rst �ve items are considered documents � a plain text� an HTML page� a book�

a tar archive and a directory� The reason that a directory is considered a document

is that somewhere inside the operating system it is represented by a �le �at least in

many operating systems��

The key property of a document is that either a document body exists� or it

is conceivable that such body could exist �directory�� A person is not a document

because a person could not be wholly represented by a computer �le� Nor is a query

considered a document� because a query� which we de�ne as an aggregation of a query

string and its results� is not a �le� Note that under our de�nition of a document� it

is moot for a document to have multiple bodies�

There are a lot of questions about the exact meaning of the word �document��

� Suppose that we have the same �document� saved as an MS Word and HTML

�les� Should these two �les be considered to store the same document�

� Suppose that we have two copies of the same book� A reader wrote his comments

on the pages of one book� the other has pages torn out� Should these two books

be considered the same document�

There are no �right� answers to these questions and we will not try to answer them�

The important questions for Haystack are� ��� how to represent a document and ���

once a representation is chosen� what exactly does it represent�

��

����� Why a Document Is Represented by a Bale�

Haystack Document

So far we have explored what we call a document in the �real world�� In this subsec�

tion we write about the representation of documents in Haystack� What we represent

in Haystack is somewhat di	erent from the real world document � we call it a

Haystack Document �HD�� We de�ne a Haystack Document as an aggregation of

the document body and the metadata�

We must pick an object in the Haystack data model to represent a Haystack

Document� The object representing a Haystack Document would attach straws rep�

resenting the metadata� There are two candidates for the job � the needle that stores

the document�s body or a bale�

Why the Body Needle Cannot Represent the Haystack Document

In theory� a Haystack Document could be represented by a needle wrapping around

the �le containing the body of the document� After all� each real world document

has a body� and is de�ned by this body� However� this needle cannot serve as such a

representation for the following reasons�

� Haystack does not need to possess a document�s body to represent the

document� There are two situations in which we want to have a representation

of a document without having the actual body�

� We might know about a document whose body might be unavailable� For

example� we might have a citation of a book� with its author� title� pub�

lisher� etc�� yet not have the book itself� The fact that the body of the

book is not currently available should not preclude us from representing

the book�

� It might be conceivable that a a body exists or could be created� yet

Haystack does not possess it� For example� consider a directory� A di�

rectory could be represented as a �le as it is the case in the Windows

��

operating system� or if the directory is fetched through a web server� At

the same time� Java I�O does not allow the programmer to obtain the body

of the directory � the programmer should use Java methods to query the

operating system about the contents of a directory� To deny a directory a

status of a document in this case would mean that a representation of a

directory depends on the particulars of the computer system� which should

be irrelevant to the question of whether a directory is a document or not�

Since a document body is not always present� and we want our representation

to be consistent among the documents with and without a body� it is impossible

to always represent a document as a needle�

� A needle could not possibly represent a document because it is nothing but

�raw bits�� A needle that contains a string �My Thesis� could be the body of

one document and the title of another� Since needles are unique it would be

extremely confusing if the needle represented a document and a title at the same

time� In fact� metadata could not be attached to the needle directly� because

the metadata is only relevant to the body in the context of the document�

Thus� the needle that contains a Haystack Document�s body cannot represent the

Haystack Document� Moreover� no other metadata needle can represent a Haystack

Document for the similar reasons�

Having ruled out needles� a bale is left as the only plausible representation of a

Haystack Document� In fact� a bale is a good representation because it was designed

to represent a complex relationship and that is what Haystack Document is � it is

an aggregation of the document body and the metadata�

Implications

The fact that a Haystack Document represents an aggregation of a body and metadata

implies that there can be two di	erent Haystack documents whose bodies are iden�

tical� Although not common� this is a plausible situation� It is conceivable that two

people independently create two documents with the same text� To re
ect the reality

��

accurately� Haystack should have di	erent representations �two di	erent document

bales� for these two di	erent real life objects�

Finally� we answer the two questions that were left unanswered at the end of the

previous section� except that now we talk about a Haystack Document instead of a

real world document�

� If we have the same �document� saved as an MS Word and HTML �les� these

would be archived separately� and represented with di	erent Haystack Docu�

ment bales� The two �les correspond to two Haystack Documents because at

least one of the pieces of their metadata is di	erent � the DocType� Note that

if the SimilarText service is running� it would see that the texti�ed versions of

the two documents are �nearly� identical and would create a �Tie�SimilarText�

between the two bales�

� If there are two copies of the same book and a reader wrote his comments on

the pages of one book� and some pages are torn out in the other� we would

also have to create two di	erent Haystack Document bales� Their bodies are

slightly di	erent �pages missing� and the second book has metadata �the reader�s

comments� that the �rst one does not� Again� most likely� a connection between

the two books would have to be established eventually � by a SimilarText

service� through a common Author needle� or in some other way�

We were able to answer these questions because semantically� a Haystack Document

is closer to a copy of a document than to a document� Haystack can deal with this

because storing �an extra copy� is cheap� and we hope the human user would �gure

out in which piece of information she is interested�

Immutability of Documents

Once a document bale is created� and a body needle is attached� this body may not

be detached or replaced by another one� When a body needle is attached� Haystack

services react to this event by creating additional straws based on the body of the

document� For example� once a body of a Postscript �le is created� an appropriate

�

texti�er service creates and attaches to the bale a needle that contains the text of the

body� If the original body disappears or changes�� the new straws might no longer be

correct� Since it is virtually impossible to determine which straws became incorrect�

a body needle may not be detached or replaced�

In fact� the above argument applies not only to the body needle� but also to

the DocType� location and other metadata needles� If any of these de�ning needles

change� the Haystack Document would no longer be the same� The question then

arises� what shall we do if one of the de�ning needles needs to change� Unfortunately�

Haystack does not currently deal well with such mutations �but might be able to in

the future��

A standard solution to the �mutation� problem is to create a completely di	erent

bale� By doing this� we introduce redundancy but avoid creating an incorrect data

structure� Haystack relies on the user to ultimately decide which piece of data she

wants to use�

For example� consider the following situation� Suppose a user archives a revision

of a document� that is already represented in Haystack� Even if the user is not

interested in keeping the body of the original revision� we would have to create a new

document bale for the new revision� Of course� a tie should be created between the

original document and the revision indicating the relationship between the two�

��� Collections

Another class of objects that could possibly warrant a special representation is that

of collections� Among the examples given on page �� a tar archive� a directory and

an HTML document can be considered collections� a tar archive has associated with

it a collection of �les that it includes� a directory has associated with it a collection of

�les that it contains� and an HTML page has associated with it a collection of URLs

to which it points�

�Due to needle immutability� the body could only change if the original body needle was replaced
by another one�

��

While some of the examples listed above are commonly viewed as collections�

HTML documents can be considered unusual� The reason for this is that a tar archive

contains its parts� while an HTML document only points to other documents� We

feel that while there is a distinction between containment and pointing �see Section

���� for a discussion of that�� there are many commonalities � enough to say that

URLs linked from an HTML page comprise a collection�

It is important to understand that under a broad de�nition collections are not

limited to a few speci�c types of �les� Any large amount of data must be organized to

facilitate access� All data is grouped into collections �although sometimes implicitly�

and might belong to more than one collection� Collections might be based on a variety

principles� For example� data is grouped by the area of knowledge �chapters in the

book�� by ownership �all documents on a company web site� or by relevance to a

speci�c person�object �links from personal home page��

Thus� a great variety of documents have the potential to be considered collections�

What makes tar �les and directories special is that the collection relationship has been

the explicit purpose of the document� This argues that collection relationship among

the parts should be stronger than in �implicit� collections� However� we feel that this

di	erence has so far been insu�cient to warrant an augmentation of the data model�

Thinking about collections led us to two other interesting questions� The �rst

question is that of de�ning containment and reference� The second is that of whether

one bale can express multiple relationships� We will now address these two question

in turn�

����� Containment vs� Reference

The question of what constitutes containment and what constitutes referencing �or

pointing� is interesting for two reasons� First� it comes up in the discussion of collec�

tions� And second� the answer is needed to label ties appropriately �if distinction is

to be made in the Haystack data model��

Containment and pointing are not clearly de�ned with regard to many instances

encountered in real life� For example� a �le system directory is often viewed to contain

��

a �le� unless it is a symbolic link� in which case� the relationship is considered pointing�

Another example might be a book on�line� If a book is saved as a number of �les

representing chapters� and an index �le points to the chapters� we say that the book

points to its chapters� On the other hand� if an entire book is stored in a one large

�le� the �le is said to contain the chapters�

The two examples above present at least two reasons to argue for no distinction

between containment and pointing�

� The �rst example �directory� shows that containment and pointing are not

clearly de�ned themselves with regard to many instances occurring in real life�

While we can elaborate their corresponding de�nitions� this would require us to

go into great technical detail�

� The second example �the book� draws our attention to the following problem� A

single piece of knowledge �a book� can be viewed to have di	erent relationships

among its parts depending on the way it is stored in a computer system� a

book can be stored ��� as one large �le that contains the chapters� or ��� as

an index �le that points to the �les that store the chapters� In both cases�

conceptually� we are dealing with the same object � the book� However� it

seems that the technical details of how the books are stored a	ect the way in

which the book�s internal structure is viewed �containment or pointing�� We

feel that a data model must represent knowledge unambiguously� which means

that di	erent representations of the same book must be conceptually identical�

The only way to achieve this is to view containment as equivalent to reference�

Despite the reasons above not to make the distinction� Haystack continues to use

�Contains� and �References� ties according to the following intuitive de�nition of

these terms� A document A is said to contain document B� if the body of B could

be obtained from processing the body of A �e�g�� decompressing�� Everything else is

called referencing�

��

document
Tar archive

Document #3
Extracted

Bale

Document #2
Extracted

Bale

Document #1
Extracted

Bale

Tie.ContainsTie.ContainsTie.Contains

Bale Tie.DocType Needle.HayMIMEData.Tar

Figure ���� The Current Way of Representing Relationships

��� How Bales Express Relationships

The purpose of a Bale in the Haystack data model is to represent a multilateral

relationship among straws� For example� consider a bale that represents an HTML

document� In this example� we can talk about a relationship among all the documents

linked from the HTML page� We can say that all of these documents are in the

�referenced together� relationship� Similarly� for a tar archive� we could say that

all documents extracted from the archive are united by a �common containment�

relationship�

For an HTML or a tar document bale� the common reference or common con�

tainment relationship seems very signi�cant� During the design of the data model

we considered creating a separate bale that would link all of the documents pointed

to or contained in one particular document� Figures ��� and ��� show possible rep�

resentations of a Tar archive� Figure ��� shows the current representation� Figure

��� depicts an alternative representation where one bale represents the tar document�

and another bale represents a collection of documents contained in the tar archive�

We rejected this alternative representation for two main reasons�

��

Needle.HayMIMEData.Collection

Tie.DocType Needle.HayMIMEData.Tar

Tie.DocTypeBale

Bale

Document #3
Extracted

Bale

Document #2
Extracted

Bale

Document #1
Extracted

Bale

Tie.Contains

Collection

Tie.Member Tie.Member Tie.Member

Tar archive
document

Figure ���� An Alternative Way of Representing Relationships

��

� The biggest reason for using a separate straw is the ability to point to it� For

example� a tie requires a separate straw because sometimes we want to point to

a relationship among two other straws� not at either of the straws themselves�

In the example of a collection� the relationship of a collection is so closely tied

to the document relationship that it is unlikely that someone would need to

distinguish between the two�

� Unless somebody wants to point to the collection speci�cally� both represen�

tations are isomorphic in that one can be derived from another� For example�

given representation ���� one can infer that all documents pointed to by the

�Tie�Contains� tie are in the collection relationship� Since both representations

are equivalent functionally� and representation ��� is more complex� we choose

representation ����

� Consider a paper that has multiple authors� We could say that these people

de�ne a �common authorship� collection� We could also talk about a collection

of queries that match this document� etc� If we were to adopt representation

���� we would have to create bales for all �common ���� relationships or draw

the line somewhere� The latter solution would make our data model explode in

size without adding any real bene�t� It would also mean special treatment for

certain relationships which is undesirable�

The last argument illuminates the following point� If in a bale several ties of the

same type are present� we can always talk about a sub�relationship among the straws

pointed to by the ties of the same type� A bale can be said to represent one complex

relationship� or to represent a number of simpler relationships� Although we could

create a data model in which one bale would correspond to exactly one relationship�

we refrain from doing so to avoid a complex data model and because under the current

data model it is still possible to derive the simple relationships�

��

��

Chapter �

Data Manipulation Services

This chapter describes the implementation of the data manipulation services and of

the dispatcher that coordinates the work of these services� Data manipulation services

are responsible for creating and modifying the Haystack data graph� The reader

might remember from Chapter that many data manipulation services are run in

response to the events in the data model� We begin this chapter by describing the

Haystack event model and its implementation in Section ���� After the mechanisms

controlling the data manipulation services are understood� Section ��� describes the

archiving service which coordinates the process in which a document becomes a part

of Haystack� This process is called the archiving process� Next� Section �� reviews the

data manipulation services that are involved in the processing of information inside

the documents� We take a closer look at the extractor services to give the reader a

deeper understanding of how the data manipulation services interact with the data

model� The last Section� ���� describes the implementation details of the archiving

service�

��

��� Event�Driven Services and Dispatching

	���� Overview

Haystack uses event dispatching to enable data manipulation services to react to

changes in the Haystack data graph� Haystack implements its own event dispatching

because Java event dispatching lacks
exibility required to support our needs� The

events are dispatched by the HsDispatcherService� Once an event occurs� the dis�

patcher service identi�es services that are interested in this event and puts them in

the queue for running� The dispatcher has under its control several threads that are

used to run the services in the queue� Services use a structure called the star graph

to indicate their interests to the dispatcher�

Events

Haystack implements two main kinds of events � Haystack events and Object events�

� Haystack events occur when two straws are connected with a tie �HaystackCre�

ateEvent�� or when straws previously connected are disconnected

�HaystackChangeEvent�� HaystackChangeEvent is not presently used �i�e� events

of this type are not thrown and no service is interested in this event��

� Object events occur when straws are created� deleted or changed� At the present

time� none of the Object events are being used�

Thus� the only event presently used is HaystackCreateEvent� This event occurs when

a tie is created to point from one straw� called the source straw to another� called the

target straw�

	���� Star Graph

The reason for having event�based services �as opposed to call�based� is the following�

When a straw is added to the Haystack data structure� it is possible that further

information can be obtained from that straw� It is also possible that the appearance

��

of a straw may signal that information may be extracted from another straw� For

example� if a needle containing an HTML document is created� we know that certain

information �e�g� the title� can be extracted from the body needle� In this example�

the HTML �eld��nder service would be interested to know that such a needle has been

added� There is a large number of services that might be interested in these types

of events� Under these circumstances� an event�based model leads to a conceptually

clear code model and easier application design� In particular� under the event�driven

model� services are independent in that they do not need to know about each other�

A service needs to tell the dispatcher that the service wants to be triggered in

response to a certain change in the Haystack data graph� This is done by specifying

a star graph of interest� A star graph is an abstraction that describes a small piece

of the data graph� A general form of the star graph is the following�

Straw Root of type R
Tie of type T� connecting straw Root to straw of type S�

Tie of type T� connecting straw Root to straw of type S�

���
Tie of type Tn connecting straw Root to straw of type Sn

For example� consider the following star graph�

Straw Root of type �Bale�
Tie of type �Tie�Body� connecting straw Root to straw of type �Needle�HayFile�
Tie of type �Tie�DocType� connecting straw Root to straw of type

�Needle�HayMIMEData�HTML�

An HTML �eld��nder service would use this star graph to indicate its interests

to the dispatcher� When the �eld��nder passes the star graph in the example to the

dispatcher� it says� �Inform me when the following con�guration is created in the

straw graph� a Bale that has a body of type �Needle�HayFile� and a document type

of �Needle�HayMIMEData�HTML��

Note that each ray of a star graph consists of exactly one ftie� strawg pair� In other

words� a ray can not be �tie X� connecting straw Y� connecting tie X� connecting

straw Y�� �two pairs�� The reasons that a star graph does not have more than one

�

ftie� strawg pair are that ��� there was never a need for that� and ��� supporting rays

with multiple pairs would signi�cantly complicate the implementation�

	���� How Dispatching is Done

When Haystack is initialized� all services inform the dispatcher about their interests

by registering appropriate star graphs with the dispatcher� When the con�guration

of the data graph changes� the dispatcher determines whether the changed con�gu�

ration matches any of the star graphs� Speci�cally� when the HsDispatcher service is

informed that a HaystackCreateEvent has occurred� it determines whether the source

straw and its out�coming ties �t any star graph�

For each star graph sg with root R� the dispatcher does the following� The dis�

patcher examines whether the source straw�has type R� For each tie�straw pair �Ti� Si�

in the star graph sg� the dispatcher examines whether the source straw has a tie of

type Ti leading to a straw of type Si� If all of these test results are positive� the

service whose interest is expressed by the star graph sg is scheduled for execution�

Note� that when the �eld��nder is interested in Bales with bodies of type �Nee�

dle�HayFile�� it is also interested in bales with bodies of type �Needle�HayFile�Text��

The methods used to match a data graph with the star graphs need to be aware of

this� These two methods are implemented inside of the StarGraph class��The imple�

mentation of the star graph is fairly complicated� and the programmer needs to be

extra careful when modifying that code�

	���� Running Triggered Services

After the dispatcher determines which services are interested in the event� it places the

fService� Eventg pairs into a queue for execution� The dispatcher has at its disposal

�Note that the dispatcher only looks at the star graph of the source straw and not at the star
graph of the target straw�

�Until recently star graph matching had been done using the ORO package� which implemented
regular expression matching� For a number of reasons we had to stop using ORO and matching
had to be re	implemented using Java
s String methods� The new implementation turned out to be
simpler and also more e�cient�

��

a pool of several threads which it uses to run the services scheduled for execution�

In order to avoid synchronization problems� no two services working on two events

with the same source straws should be executed at the same time� In other words�

if services A and B are in the queue to handle events that share a source straw� the

dispatcher must wait until service A is done� before running service B��

��� The Archiving Process

The process of making an outside document a part of Haystack may be abstracted

into two steps�

�� Obtain the body of the document �e�g�� fetch a �le from a URL location�

�� Create appropriate structures in the data graph to signify the document and

the metadata� In particular�

� Create the document bale�

� Try to determine the document type �e�g� Postscript��

� Attach all the metadata existing about the document at the moment �in

the form of needles�� including the document type� to the document bale�

The process outlined above is called the archiving process� Another way to de�ne

it is� steps that Haystack must take immediately after a request to make a document�

a part of Haystack�

There are several possible scenarios in which an archiving process may be initiated�

� By a user� when he issues a request to the GUI to archive a �le at a speci�ed

location�

� By a service� A service can learn about the existence of an outside document

by analyzing a document already in Haystack �e�g�� a directory that has already

�Note that when we say �running service x in response to the event y of type HaystackCre	
ateEvent we mean calling method handleHaystackCreateEvent of the class x with argument y�

�By �document here� we mean a �real world document as discussed in Section �����

��

been archived� and a service that decides to archive �les in the directory�� Alter�

natively� an observer service �see Section ��� can decide to archive a document

�e�g�� a web page browsed by the user��

Also� it is possible that a service already has the body of a document� but needs to

perform step two to complete the archiving process�

	���� Archiving Service

A service called HsArchive is responsible for coordinating the archiving process�� The

HsArchive service is not a very large piece of code� However� this service is crucial to

ensuring that the data graph is created in accordance with the rules of the Haystack

data model�

In order to archive a document� a user must specify its location� At the present

time there is only one kind of location � a URL location � other kinds of locations

are not foreseen in the immediate future� Thus� from now on we will assume that

location is represented by a URL� Note that a URL can specify either a remote

document� or a local �le �using the ��le� protocol�� Also� the reader should keep

in mind that it is possible to archive a document that does not have a body �for

example� a directory��

There are two main methods in the class HsArchive� called archive and createBale�

These two methods implement steps one and two of the archiving process outlined at

the beginning of this section� The archive method obtains the body of a document�

and then calls the createBale method to create a bale and attach metadata straws

to it� Note that the method createBale can be called by any service that needs to

create a bale�

The implementation of the archive and createBale methods is relatively low�

level� compared to the rest of this section� In order to preserve the high level of

discourse� we defer the description of the implementation of these two methods until

�Other services can bypass HsArchive and create all the structures required for a new document�
However� it is preferable that HsArchive be used for this task� Archiving a document can at times
be tricky and it is better if this job is done by a �professional service rather than an �amateur�

��

the end of this chapter �Section �������

	���� Type Guessing

As discussed brie
y in Section ���� each document bale must attach a DocType nee�

dle� The DocType needle �e�g� the needle attached by the �Tie�DocType�� indicates

the format of the document represented by the bale� Examples of DocType needles

are �Needle�HayMIMEData�Postscript� and �Needle�HayMIMEData�Directory�� A

special DocType �Needle�HayMIMEData�Unknown� is used to indicate that the bale

represents a document whose type Haystack was not able to determine�

The DocType of an archived document is determined by a service called HsType�

Guesser� The �guesser� part in the name of the service indicates the degree of un�

certainty associated with the process of determining the type of a document� This

process is uncertain by nature because Haystack can not possibly know about all the

computer formats� However� the type guesser attempts to determine some of the

well�known formats as follows�

� If a URL location needle is present� the type guesser extracts the �le part of the

URL and� if the the �le extension is present tries to determine the type based

on that �e�g� ��ps� extension means Postscript��

� If a �lename needle is present� the type guesser again looks at the type extension�

� When the body of the document is obtained through negotiations with a Web

server� the server often informs the client about the nature of the data being

transmitted �e�g� �HTML��� These data� called the MIME content type� is only

present in �les that have been obtained through the Web or by email� If this is

the case with the document in question� the type guesser uses the content type

to determine the DocType�

� Finally� the type guesser has the ability to determine the DocType by looking

at the body of the document� However� such capabilities are not implemented

at the present time�

��

The type guesser tries all four of the above methods�� and assigns the appropriate

DocType if at least one succeeds� If none of the methods succeed� the DocType

�Unknown� is assigned to the bale�

The reason that we would rather have an �Unknown� DocType than no DocType

at all is that some services might be able to extract data from a document of an

�Unknown� type �e�g� a texti�er service could use the �strings� command from the

Unix operating system to extract text data from a �le of an arbitrary type�� If

a DocType tie is missing� a service cannot determine which is true� ��� the type

guesser has not run yet� or ��� the type guesser cannot determine the document type�

There are two alternatives as to how and when the type guesser can be run� First�

it can be done the way it is implemented right now� createBale method calls the

type guesser unless the DocType is already present� Second� the type guesser could be

event�driven� i�e� the type guesser could trigger each time a new �piece of evidence�

is added to the data graph� body� location� �lename or the content type� We choose

the �rst alternative for the following reasons�

� Since each document bale must have a DocType needle� calling the type guesser

in the createBale method ensures that the rule is observed�

� It is possible that neither body� location� �letype nor content type ever become

available� An event�driven type guesser cannot anticipate whether an �evi�

dence� will be forthcoming� and will never be forced to assign an �Unknown�

type�

� In practice� all four pieces of �evidence� exist by the time createBale is called�

Thus� there is no reason to wait with calling the type guesser�

It has been argued that the user should be able to alter the DocType manually

if he disagrees with the decision of the type guesser� This is problematic due to the

issue of document immutability� discussed at the end of Section ������

�If methods in the type guesser disagree on the answer� the type guesser picks the answer provided
by the most �credible method� The order of �credibility is the following� based on body� based
on content type� based on the �lename� based on the location�

��

The last issue that needs clari�cation is what happens if we want to create a

document bale� but we have neither the body of the document� nor its location� nor

the �lename� nor the content type� If this is the case� the caller of the createBale

method can either pass the DocType among the straws to attach� or pass nothing� in

which case DocType �Unknown� would be assigned to the document�

��� Data Processing Services

Data Processing services include �eld��nders� texti�ers and extractors� Below is a

list of existing data processing services�

Field�Finder Services extract information from archived documents� mostly meta�
data � the title� the author� etc� At the present time� �eld��nder services for
the following document formats are available or being worked on�

� Latex

� HTML

Texti�er Services extract text from formatted documents� At the present time�
texti�er services for the following document formats are available or being
worked on�

� ASCII �dummy texti�er�

� Dvips

� HTML

� Latex

� Postscript

Extractor Services extract data from documents that contain or point to other
documents� Extraction here is de�ned broadly� and does not imply that ex�
tracted documents are contained in the parent document� Thus� although a
directory references� rather than contains its �les� the service that archives �les
in a directory is called an extractor� At the present time� extractor services for
the following document formats are available or being worked on�

� BABYL �Emacs mail�

� Directory

� Gzip compressed document

��

� UU Encoded

� Tar archive

Although a signi�cant number of changes were made to the code of all of these

services� many of these changes were done to comply with modi�cations in other parts

of Haystack� There were no signi�cant changes in the way �eld��nder and texti�ers

work� Since the work of �eld��nders and texti�ers was described well by Asdoorian

and Adar ��� ��� it is not necessary here to repeat these descriptions� However� it

would be bene�cial to review the work of extractors for the following reasons� First�

extractors were virtually non�existent at the time when Adar and Asdoorian wrote

their theses� Second� many of the changes made to Haystack in the past half a year

were inspired by the problems with the implementation of extractors� These problems

stem mainly from the di�culties of interaction between the services and the data

graph� By examining the extractor services here� we can illustrate the interaction

between the services and the data graph� and prove that the current data and service

models are� in fact� workable�

Thus� in the remainder of this section� we present two extractor services� Directory

and Tar� which we believe to be representative of other extractors� Please note that

in the description of the extractors� we talk about promises and HaystackFiles� If the

reader feels that the introduction to these constructs in Section � was not su�cient�

he is welcome to read section ��� that gives an in�depth explanation of promises and

HaystackFile�

	���� Directory Extractor

The directory extractor is an event�driven service that listens for the creation of a bale

with a DocType tie leading to a needle labeled �Needle�HayMIMEData�Directory��

and �Tie�Location� tie leading to a needle labeled �Needle�HayURL�� When the star

graph of interest is created� the method handleHaystackCreateEvent is called� The

following is the sequence of actions taken by this method�

�� Obtain the URL of the directory from the needle that triggered the service�

��

�� Get a list of �les in this directory using the Java I�O package�

� For each �le in the directory� do the following�

�a� If the �le is a symbolic link� do nothing�

�b� If the �le is not a symbolic link� call the archive method of the archiving

service� passing the URL of the �le as the only argument�

�c� The archive method returns the HaystackID of the bale created for the

new document� Using the Persistent Storage Service� get a pointer to the

bale by its HaystackID�

�d� Attach the bale of the new document to the bale representing the directory

by the tie of type �Tie�References��

Note that this sequence of actions assumes the successful completion of each stage�

The reader should realize that the sequence above is only a framework of what the

Directory extractor does� We can �ne tune the service by creating rules of when the

�les in a directory should be extracted recursively� whether we might want to archive

some �les and not others� etc�

	���� Tar Extractor

Tar archive extractor is an event�driven service that listens for the creation of a bale

with a DocType tie leading to a needle labeled �Needle�HayMIMEData�Tar�� and

a body tie leading to a needle labeled �Needle�HayFile�� When the star graph of

interest is created� method handleHaystackCreateEvent is called� The following is

the sequence of actions taken by this method�

�� Obtain the HaystackFile from the needle that triggered the service�

�� Run �tar �t� which outputs a list of �les in the archive� Parse the output of the

command to produce a vector of �le names�

� For each of the �le names do the following�

��

�a� Create a promise that would extract the �le with that �le name from

the HaystackFile containing the archive� Create a HaystackFile from that

promise�

�b� Create two vectors� archiveTieLabels and archiveStraws that will hold

the data to be passed to the archiving service�

�c� Create a needle with the HaystackFile that has just been created� Add the

needle to the vector archiveStraws� Also� add the label �Tie�Filename�

to the vector archiveTieLabels�

�d� Create a needle for the �le name string� Add the needle to the vector

archiveStraws� Also� add label �Tie�Body� to the vector archiveTieLabels�

�e� Call the archive method of the archiving service� passing to it two vectors�

archiveStraws and archiveTieLabels� The archive method creates a

bale for the extracted document� and returns the HaystackID of the bale�

�f� Using HsPersistentStorageService� get a pointer to the Bale by its HaystackID�

�g� Attach the bale of the new document to the bale representing the tar

archive by the tie of type �Tie�Contains��

Again� this sequence of actions assumes the successful completion of each stage�

In step �a� we created a promise to extract a Tar �le and then we ful�lled that

promise in step �b�� Note that the actual extraction is done in the promise�

��� Implementation Details

	���� Archive and Create Bale Methods

This section complements Section ��� by describing the implementation of the archive

and createBale methods�

Archive Method

The archive method has the following signature�

��

public HaystackID archive� URL loc�

Vector tieLabels�

Vector straws�

ArchiveOptions options�

HaystackUI theUI �

throws ArchiveException

� loc is the URL location of the document to be archived

� tieLabels is the Vector of tie labels with which to attach straws

� straws is the Vector of straws to attach to the new document�

� options is the Archive Options object to direct the archiving process

� theUI is the User Interface �UI� to query for user input �a dummy UI is passed
if the user is not involved in the archiving process��

This method is implemented using the following steps�

�� Make sure that neither body nor location are present in the straws vector�

�� Check whether the location loc has been archived before� If it has� use the GUI

to ask the user whether to proceed�

� Create a URL needle� Add it to the straws vector� and add �Tie�Location� to

the tieLabels vector�

�� If the URL has a ��le� protocol �e�g�� ��le����projects�thesis�almostdone��� see

if the speci�ed location is a directory�

� If it is� we know the document type and we know that body is not needed�

Thus� we create �Needle�HayMIMEData�Directory� needle and add it to

the straws vector� also adding �Tie�DocType� to the tieLabels vector�

� If the speci�ed location is a regular �le� create a URL fetch promise for that

location and create a HaystackFile from that promise� Put the Haystack�

File into a �Needle�HayFile� needle� Add the needle to the straws vector

and add �Tie�Body� to the tieLabels vector�

�

�� If the URL has a protocol other than ��le�� e�g� �http�� create a URL fetch

promise and create a HaystackFile from that promise� Put the HaystackFile

into a �Needle�HayFile� needle and add the needle to the straws vector� also

adding �Tie�Body� to the tieLabels vector�

�� Call the createBale method passing vectors straws and tieLabels to it�

Auxiliary archive method Often� there are no straws to be attached to the new

bale and the default archiving options and UI are to be used� As a matter of con�

venience� another archive method exists overloading the �main� archive method�

The auxiliary archive method takes only one argument � the location� It then calls

the �main� methods� passing empty vectors in place of straws and tieLabels� and

default ArchiveOptions and UI in place of the options and theUI arguments�

Create Bale Method

The method has the following signature�

public HaystackIDs archive� Vector tieLabels�

Vector straws�

throws ArchiveException

� tieLabels is the Vector of tie labels with which to attach straws

� straws is the Vector of straws to attach to the new document

Note that the elements of straws and tieLabels vectors should be in direct

correspondence� i�e� the ith straw in the straws vector should be attached with the

tie whose label is the ith element of the tieLabels vector� The following is done by

the createBale method�

�� Create a new bale�

�This might not be the cleanest way to pass ftie� strawg pairs to the method� but it is by far the
simplest in terms of implementation�

��

�� Create a needle with the current time and attach it to the bale using a �Tie�CreationDate�

tie�

� Attach all straws from the straws vector to the bale using ties with the labels

speci�ed in the tieLabels vector�

�� If a �Tie�DocType� tie is not in the vector tieLabels �i�e� the DocType is

unknown�� run the type guesser and attach the result with a �Tie�DocType� tie

to the bale� If the type guesser fails to determine the type� the type �Unknown�

is used� �see next Section �������

�� The HaystackID of the bale is returned to the caller�

An ArchiveException is thrown if vectors straws and tieLabels have di	erent sizes�

There are two advantages to a process in which �rst� all the needles to be attached

to the bale are created� and then� all of them are attached� The more obvious ad�

vantage is that this adds to the conceptual simplicity of the code� The less obvious

advantage is that we do not attach needles until we are sure that all other operations

completed successfully� adding to the robustness of the process� If needles were at�

tached one by one� and a failure occurred in the middle of the archiving process� we

would be left with a structure that is partially complete yet missing some important

components� which is undesirable�

What the second part of the previous passage was essentially saying is that we

want bale creation to have the properties of a transaction� In other words� we either

want a complete bale or nothing� In general having transaction capabilities could

be very useful in Haystack� However� given that ��� nothing terrible would happen

to Haystack if an operation� such as bale creation� is only partially complete� and

��� transactions are expensive and non�trivial to implement� it remains to be seen

whether Haystack would ever employ transaction mechanisms�

��

��

Chapter �

Pro�ling

Per�user customization has been a cornerstone of Haystack since inception� As part

of these e	orts� Haystack needs a means of expressing user interests and document

relevance to these interests� These needs are addressed by using word�frequency

pro�les� a standard solution to these kinds of problems� A package of utilities has

been implemented in Haystack to allow the computing and storing of word�frequency

pro�les� We begin this chapter by discussing the theory behind pro�ling in Section

���� The rest of the chapter describes the implementation of pro�ling in Haystack�

The reader can refer to Section ����� in the chapter on future work for the examples

of how pro�les can be used�

��� Theory Behind Pro	ling

In order to evaluate the relevance of a document to user interests� we need to �nd a

way to express these interests� Haystack makes an assumption that a user�s personal

�les �and the documents she accesses on the Web� re
ect on the interests of the user

�e�g� a doctor will have many medicine�related �les�� Thus� a user�s interests can be

induced from the collection of her documents�

We need a way to express the contents of a document or a collection of documents

to compare them to the contents of other documents� Information Retrieval relies

heavily on the assumption that documents with similar contents use similar words�

��

i�e� same words will occur in both documents with a similar distribution of frequencies�

To represent the contents of a document� we can compute its count�le� i�e� a histogram

of words and their frequencies in the document� Similarly� by computing a count�le of

a collection of documents� we can hope to express the contents of the entire collection�

The simplest way to measure the similarity between two count�les is to compute

their dot product�

P
wi�W

f��w�f��w�

whereW is the set of all words that occur in both documents� and fi�w� is the number

of times word w occurred in document i� If this formula is used� count�les with few

common words would produce few non�zero summation terms� whereas count�les with

many common words would have many non�zero terms� and produce a larger result�

Of course� there are many ways to improve the e	ectiveness of that formula� e�g� by

normalizing� Since the details of the dot product formula may vary depending on the

intended use� we will leave these details out of the discussion�

There are many ways to represent the contents of a document� the count�le being

one of them� Depending on the intended use� a count�le may be modi�ed �reduced

in size� frequencies slightly changed� to improve its e	ectiveness for the task� We call

such a modi�ed version of the count�le a word�frequency pro�le� or simply a pro�le�

Haystack computes pro�les which are di	erent from count�les due to the use of

two standard IR techniques� called stemming and stop word elimination�

Stemming Stemming is the process of removing pre�xes and su�xes from words�

This is done to group words that have the same conceptual meaning� such as

�walk�� �walked�� �walker�� and �walking�� Stemming maps such words to a

common stem� which gives us two bene�ts�

�� If two documents use di	erent forms of the same word� we would still be

able to take that into account�

�� Stemming reduces the size of pro�les� which makes storage and computa�

tion more e�cient�

��

Haystack uses a freely available implementation of a Porter stemmer� which is

a well�known algorithm for this task� Note that using stemmers is not without

dangers� For example� a stemmer could mistake the last two letters of the word

�number� for a su�x� and map �number� �incorrectly� to stem �numb�� which

would equate two semantically di	erent words �number� and �numb��

Stopword Elimination A stopword is a word� such as a preposition or an article�

that has little semantic content� A stopword can also refer to a word that has a

high frequency across a collection� Since stopwords appear in many documents�

and are thus not helpful for distinguishing documents� these terms are usually

removed from the pro�le� This procedure is called stop word elimination� Some

systems have a predetermined list of stopwords� However� stopwords can also

depend on context� For example� the word �computer� would probably be

a stopword in a collection of computer science journal articles� but not in a

collection of articles from Consumer Reports�

One of the goals of my thesis project was to implement the basic capabilities

needed for computing pro�les of individual documents as well as pro�les of groups of

documents �or any collection of text for that matter�� The rest of this chapter de�

scribes how this was implemented� Section ��� describes how pro�les are represented

in Haystack� Next� Section �� discusses how pro�les are computed� The last Section

��� reviews the pro�ling service that provides an interface for for dealing with pro�les

in Haystack�

��� Representing Pro	les

A word�frequency pro�le is nothing more than a table that associates words with

integer frequencies� However storing words as strings is ine�cient� Alternatively�

strings can be mapped to integer IDs and the pro�le can be a mapping of word IDs

to frequencies� This solution is used in Haystack� The Pro�le class serves as a pro�le

abstraction and the WordIDMap class is used for translation of words into IDs and

��

vice versa�

���� The Pro�le Class

In addition to the mapping of IDs to frequencies� each Pro�le contains a string� called

the info string� that can serve as a description of the pro�le� The following is the

main constructor for class Pro�le�

public Profile�int t��� int f��� String info�

� The array of integers t �t for Token IDs� should contain the word IDs in in�

creasing order� The ordering is used to make operations on pro�les take linear

time�

� The array of integers f should contain the frequencies corresponding to the word

IDs in the array t�

� String info should contain a description of the pro�le�

The most important method of class Pro�le is called addMultiply� The method has

the following signature�

public void addMultiply�Profile prof� int factor�

addMultiply adds pro�le prof multiplied by factor to this pro�le� where this

is the pro�le on which the method is called� The ability to multiply by a factor

allows for great
exibility in manipulating the pro�les� For example one pro�le can

be subtracted from another if the factor is negative� Note that a frequency can be

negative to express the �irrelevance� of a word�

��

���� The WordIDMap Class

This class represents a one�to�one mapping of words to integers� It is used to assign

integer IDs to words because using integers is much more e�cient than using strings�

� The two main methods are getID and getString� The �rst method translates

a word into an ID� while the second does the opposite� If an ID is requested for

a word that is not in the map� a new ID is created transparently to the caller

and that ID is returned�

� Once a mapping from a word to an ID has been created� the mapping can

neither be altered not removed�

� Mapping in both directions takes constant time�

��� Computing Pro	les

The Pro�lingTools class is responsible for the actual computing of pro�les� The three

main methods of this class are�

public static Profile computeProfile�HaystackFile hfile� WordIDMap map�

throws IOException

public static Profile computeProfile�String str� WordIDMap map�

throws IOException

private static Profile computeProfile�Reader in� WordIDMap map�

throws IOException

These methods can compute pro�les of a HaystackFile with text data� a String and

a Reader stream with text data respectively� Each method accepts a WordIDMap�

used to translate words into IDs� The map is updated if a method encounters a word

��

that is not in the map� Computing a pro�le takes n log�n� time� the bottleneck being

the Quick Sort needed to put the Word IDs in order�

Pro�lingTools are capable of eliminating stopwords and stemming� Stop�word

elimination is done using a list of words obtained from ����� the list is �� words long�

For stemming we use a freeware implementation of the con
ation algorithm described

by Porter �����

��� Pro	ling Service and Utilities

Pro�le creation and management is controlled by the pro�ling service� implemented

by the class HsPro�lingService� The pro�ling service can compute two kinds of pro�les

� generic and needle�

Generic Pro�les A generic pro�le is identi�ed by a unique string key� We choose

to use a string key instead of a numeric key �such as a HaystackID� because we want

the key to be able to carry semantic information as well �in other words� we want

to be able to name pro�les�� Pro�ling service can support an arbitrary number of

pro�les� A generic pro�le in Haystack can combine�

� Texti�ed document bodies �stored in �Needle�HayFile�Text� needles��

� Arbitrary text data �stored either as a String or a HayFile needle��

Thus� the pro�ling service implements the following methods for dealing with generic

pro�les�

� void addStringToProfile�String str� String key� int factor�

Adds String str to the pro�le speci�ed by the key� The string�s pro�le is

multiplied by the factor factor before being added to the pro�le� If no pro�le

is associated with the given key� a new pro�le is created that is associated with

that key�

� void addNeedleToProfile�HayFile needle� String key� int factor�

throws LabelException

��

Adds a text �le needle to the pro�le speci�ed by the key� The needle�s pro�le

is multiplied by the factor factor before being added to the generic pro�le�

If no pro�le is associated with the given key� a new pro�le is created that is

associated with the key� Note that the HaystackFile encapsulated by the needle

is passed to the method� not the needle itself�

� private Profile getProfile�String key�

Returns the pro�le associated with the given key� If no such pro�le exists�

returns null�

� public boolean discardProfile�String key�

Removes the pro�le associated with the given key from persistent storage�

Needle Pro�les Creating a pro�le of a document is a more expensive operation

than combining two pro�les and it is preferable that a pro�le of a document be

computed only once and then cached� To this end� there is a special kind of a pro�le�

called the needle pro�le that contains a pro�le of a HayFile needle with text data

�which takes care of all the large document bodies�� Needle pro�les are computed

for needles of type �Needle�HayFile�Text�� This pro�le is computed transparently

to the user� by calling a getNeedleProfile method� When the method is issued

for the �rst time� the pro�le is computed and returned to the caller� Needle pro�les

are permanently stored� so that on a subsequent call to getNeedleProfile Haystack

does not need to recompute it� A needle pro�le is identi�ed by the needle�s Haystack

ID�

The same map is used for all pro�les� When the pro�ling service is initialized� it

reads the WordIDMap from disk �if one exists�� On shutdown� the pro�ling service

checks if any new words have been added to the WordIDMap� and if so� it saves the

modi�ed WordIDMap to disk��

�WordIDMap is always saved before a modi�ed pro�le is saved� This is to make sure that
a Haystack failure would not result in a pro�le on disk that uses a word ID that is not in the
WordIDMap�

�

���� Storing Pro�les

All pro�le related information is stored in the directory ��HAYLOFT�pro�les�� where

��HAYLOFT� is the location of the Hayloft� Haystack�s permanent repository� The

pro�le directory has two subdirectories� one for needle and the other for user pro�les�

Initially we considered storing pro�les of needles as a part of the Haystack data

model� i�e� representing a pro�le as a straw of some kind� We rejected this idea for

the following reason� A pro�le is not something a user will ever want to look at�

Rather� it is a system object� Adding an unnecessary piece of data to the Haystack

data graph would clutter information presentation and would make it harder for the

user to navigate the graph�

���� Viewing Pro�les

Two methods are available for viewing a Pro�le object inside Haystack� Method

printWordProfile of the Pro�le class takes a single argument� a WordIDMap object�

and prints the pro�le to the standard output� printSortedWordProfile does the

same thing except that the words in the pro�le are sorted in the order of increasing

frequency�

For debugging purposes pro�les can be viewed from outside the Haystack as well�

The ViewProfile command �haystack�bin�ViewProfile� takes two arguments�

word�id�map and profile� The �rst argument speci�es the name of the �le con�

taining the WordIDMap �presently� ��HAYLOFT�pro�ler�WordIDMap��� and the

second the name of the �le containing the pro�le� One can easily �gure out the

�le name of the pro�le of interest by browsing the ��HAYLOFT�pro�ler� directory�

ViewPro�le outputs the pro�le with its elements sorted by frequency�

��

Chapter �

System Design

This chapter reviews the last several pieces of system design that have been added

or changed in the course of my project� Section ��� describes promises and the

promise cache service� It also covers the HaystackFile construct that abstracts away

a di	erence between a promise and a �le� Section ��� talks about three important

system services that deal with Hayloft management� concurrency control and straw

object creation� This is followed by a discussion of the straw typing implementation

in Section ��� The contents of this chapter are a bit scattered because we wanted

to leave the implementation details until the end� we did not want to mix them with

the more conceptual discussion in the previous chapters�

�� Promises and Haystack File

Computer users today have to deal with large amounts of data� which includes both

their own �les and the �les available on�line� In order to manage all of these data�

Haystack must store internally a large number of �les� In fact� the amount of such

data becomes prohibitive when one takes into account the following facts�

� Due to sophisticated data formats a large percentage of �les have sizes of several

megabytes�

��

� For each document� Haystack often needs to maintain several �les �e�g� tex�

ti�ed version� or might need to create additional documents �e�g� documents

extracted from an archive��

� While the number of personal �les is limited by the amount of persistent storage

�i�e� hard�drive� available to the user� the number of �les available on the Web

is virtually in�nite�

Often� �les managed by Haystack are readily available �e�g on the Web� or Haystack

knows how to obtain these �les �e�g� Haystack can easily extract a �le from an

archive�� Given this and the limitations on the amount of data Haystack can store in�

ternally� it becomes desirable be able to store not a �le itself� but an object expressing

the knowledge of how to obtain that �le�

����� Promises

In order to provide this faculty� Haystack uses a structure called a promise� A promise

is normally a small object that stores information on how to obtain a speci�c piece

of data� When the data is needed� a method called fulfill is called on the promise�

and the data is returned�

It is only useful to create promises for large pieces of data� Thus� we do not have

a promise that returns a String or an integer�

A promise is implemented as an abstract class �src�haystack�object�Promise�java��

Any class extending Promise must implement method fulfill that returns an InputStream

with the data� or null if the promise could not be ful�lled� In addition� the Promise

class provides a method that� given a �le name� writes the data of the promise in that

�le�

Each promise has a HaystackID associated with it� The capability to uniquely

identify a promise is used by the HsCacheService �see section ������

There are many classes extending the Promise class� There are promises that

fetch �les from the web� promises that extract �les from archives or compressed �les�

promises that textify� etc� Often� a service that is supposed to do something �e�g�

��

textify� only creates an appropriate promise� and it is the class implementing the

promise that actually does the job �e�g� texti�cation��

����� Haystack File

If Haystack has a piece of data� it can either store a �le with this data� or a promise

that returns the data when ful�lled� Note that promise ful�llment results in an

InputStream� which� when serialized to disk� becomes a �le� Thus� a promise can be

viewed as a substitute for a �le� It is desirable to have an object that looks like a

regular �le� yet may have a promise inside it�

Such an object exists and it is called a HaystackFile� A HaystackFile can ei�

ther store a �le or a promise inside it� Speci�cally� a HaystackFile can store a

java�io�File object� As the reader may know� java�io�File is essentially a �le

name and does not have read or write methods� When the programmer wants to read

the data from the java�io�File� she creates an InputStream from the File object�

and the InputStream can then be read� Similarly� HaystackFile does not have a read

method� but has method getInputStream that returns an InputStream with the

data� Besides java�io�InputStream� the user can also request a

java�io�RandomAccessFile using the getRandomAccessFile method�

Promises are read�only by nature� Since HaystackFile wraps around a real �le or

a promise� a HaystackFile is always read�only� HaystackFile returns only read�only

objects� InputStream is read�only by de�nition� and RandomAccessFile is created

with a read�only option�

Sometimes� there are many ways to obtain a piece of data� The same �le can be

stored in multiple locations on the Web� for example locations x and y� For the sake

of robustness the user might want to create a HaystackFile that would �rst attempt

to fetch the �le from location x� and if that is not successful� attempt to fetch it

from location y� In order to implement this� HaystackFile stores an array of promises�

When the user requests data from the HaystackFile� Haystack attempts to ful�ll all

the promises in that array� As soon as one promise is ful�lled successfully� the data

is returned�

��

A constructor for a HaystackFile takes either a java�io�File or a

haystack�object�Promise� If the programmer has created a HaystackFile with a

promise and wishes to add an additional promise to it� the addPromise method is

used��

HaystackFile Veri�cation

It is not uncommon that a promise fails �e�g� when an object speci�ed by a fetch

promise is moved or deleted�� When a promise is unful�llable� it is preferable to

determine that as soon as possible� When a promise is passed to the Haystack�

File constructor� the program �rst veri�es that a valid InputStream can be ob�

tained from the promise� If promise ful�llment fails� the constructor throws an

InvalidDataException�� Similarly� a java�io�File object may specify a �le name

of a non�existing �le� but HaystackFile constructor veri�es that this is not the case�

Verifying the input to the HaystackFile might have positive repercussions on the

performance� A HaystackFile often becomes the data of a HayFile needle� If the

data in the HaystackFile is invalid� creation of this needle triggers services that are

certain to fail� This results in wasted system resources �time� risk of resources not

being available to other services�� Verifying the input to the HaystackFile prevents

this waste�

A possible disadvantage of veri�cation is that veri�cation itself is an unnecessary

waste of resources �we have to ful�ll a promise�� However� in reality the data of

the HaystackFile is almost always requested shortly after the HaystackFile has been

created and with the promise cache �described below� it is not such a big waste�

����� Promise Cache

It is very common that the data of the same HaystackFile is requested several times

over a short period of time� If the HaystackFile contains a promise� this promise must

�Note that normally it does not make sense to add a promise to a HaystackFile that stores a
java�io�File because presumably such a �le can be accessed reliably

�Unfortunately� this veri�cation does not protect from the case that a �le that the promise
depends on becomes unavailable in the future �e�g� web site with the �le in question is shut down��

��

be ful�lled each time the data is requested� Ful�lling a promise for a large �le might

be costly in terms of processor time� memory and I�O resources� In order to improve

e�ciency� the results of promises can be cached�

HaystackFile uses a service called HsCacheService to cache the data of the promises�

Remember that each promise has a HaystackID and this ID can be used as a key for a

promise in the cache� Promise caching works as follows� When the data is requested

from the HaystackFile and the HaystackFile needs to ful�ll a promise� it �rst checks

whether the data of the promise is currently available from the cache� If this is the

case� HaystackFile obtains these data from the cache and returns it to whomever

requested it� If the data is not in the cache� HaystackFile ful�lls the promise and

passes the result to the cache service� Then HaystackFile returns the requested data�

There are two reasons why caching is done by a special service instead of Haystack�

File itself� The �rst reason is that maintaining a cache is a complicated task �cache

needs to be cleaned up every now and then� etc� � and it is preferable to have a special

service responsible for it� The second reason is that the way the cache is designed� it

can potentially be used by parties other than HaystackFile to store temporary �les

for a controlled period of time�

Implementation of HsCacheService

When a �le is placed into the cache� it remains there as long as it is being used by

somebody� If a �le has not been used for a certain period of time �FILE TIMEOUT��

the �le is removed from the cache� Note that the cache service does not have the

ability to determine directly whether a �le is still being used� Upon request for a

�le� HsCacheService creates an InputStream or RandomAccessFile object and then

returns this object� The receiver of the InputStream may use it for a split second and

then discard the object� or may keep it for the lifetime of the Haystack process� For

a long time this technical di�culty precluded us from implementing a cache� Finally�

a solution was found that uses java�io�FileDescriptor�

A FileDescriptor is an opaque handle to the underlying machine�speci�c struc�

ture representing an open �le or an open socket� A FileDescriptor has a method

��

that tells whether it is valid ��le is open� or invalid ��le has been closed�� Both

FileInputStream and RandomAccessFile have FileDescriptors inside them� When

the HsCacheService creates an InputStream or a RandomAccessFile� it retains the

FileDescriptor of that object� After an InputStream object has been used� Java

closes the stream� and the corresponding FileDescriptor becomes invalid� Each time

the HsCacheService does a cleanup� it checks all FileDescriptors in its possession

for validity� When all FileDescriptors for a particular �le become invalid� the cache

service knows that the �le is no longer in use��

Java speci�cations do not provide an excessive amount of documentation for

FileDescriptors� For this reason� it is recommended that FileDescriptors not be abused

by the programmer �e�g� cloned or used to create other objects� lest the cache service

might stop working properly� The only piece of code that needs to use the FileDescrip�

tor is the HsCacheService� Other services should avoid using FileDescriptors of the

objects that might have come from the promise cache�

�� System Services

����� Hayloft Management Service

Haystack uses a directory called the Hayloft to store its persistent data� Some services

create subdirectories in Hayloft and manage their �les there� Often� a service needs to

create a temporary �le or directory� or store a �le permanently in Haystack� A service

called the HsHayloftManagementService helps other services manage these tasks�

The Hayloft management service maintains a temporary directory in Hayloft that

can be used to create temporary �les and directories� The following methods provide

these capabilities�

� public String createTemporaryDir��

�When an InputStreamReader is created from a FileInputStream� the InputStreamReader has
the same FileDescriptor as the FileInputStream�

��

This method creates a new temporary subdirectory in Hayloft� One of the uses

of this method is by the extractor services that need a temporary directory

to which to extract �les� The temporary directory disappears on Haystack�s

shutdown� The method returns the absolute pathname of the new directory� or

null in case of failure�

� public String getNewTemporaryFileName��

This method returns a �le name that could be used to create a new temporary

�le� The �lename is guaranteed to be unique for the current Haystack session�

It is also guaranteed that a �le with this �le name does not currently exist� The

�le is destroyed at the end of Haystack session�

� public RandomAccessFile getNewTemporaryRandomAccessFile��

This method creates a new �le in the Haystack temporary directory� The �le

is created with read�and�write permissions� This �le is destroyed on Haystack�s

shutdown� Returns the �le handle to the new �le� or null if creation fails�

There are two ways in which Haystack can �possess� a �le� The �rst is by having

a promise� i�e� knowing a way to get the �le� Promises are normally used for �les

stored remotely� or �les that can be obtained by applying some method to another

�le �e�g� extraction�� The second way is to store a �le permanently inside Hayloft� i�e�

save the �le internally� This process is called shelving� Hayloft management services

provide two utilities for shelving �les�

� public HaystackFile shelve�InputStream in�

This method saves data in the InputStream permanently in Hayloft� The

method returns a HaystackFile object for this �le in case of success� or null

in case of failure�

� public HaystackFile shelve�Promise promise�

This method takes a promise and saves its data permanently into some �le

in Hayloft� The method returns a HaystackFile object for this �le in case of

��

success� or null in case of failure� Shelving a promise guarantees that its data

will always be accessible in the future�

Shelved �les are assigned arbitrary unique names and stored in the ArchivedFiles

directory inside the Hayloft� We might move to a more sophisticated directory struc�

ture in the future because ��� we might run into limits on the number of �les in a

directory� and ��� a directory with a large number of �les takes a long time to access�

����� Resource Control Service

Haystack is a fairly large system� and there are many instances when a programmer

has to worry about the possibility of race conditions� Besides� Haystack essentially

implements its own database system where synchronization is always a concern� To

deal with this problem� the programmer can use HsResourceControlService which

provides locking mechanisms by objects�

HsResourceControlService provides a capability to obtain and release exclusive

locks� A lock is identi�ed either by a string� or by a Straw object�� The following

methods provide capabilities to obtain�release a single lock�

public void lockResource�String resource�

public void unlockResource�String resource�

public void lockResource�Straw resource�

public void unlockResource�Straw resource�

Very often a service might need to obtain several locks� In order to avoid the possibil�

ity of a deadlock� the locks should always be obtained and released in the same order�

In order to facilitate this� several methods are available in HsResourceControlService�

Although these methods are nothing but syntactic sugar� it is highly recommended

that they be used to make sure that locking occurs in the right order�

�Which is mapped uniquely onto a string�

��

public void lockResources�String n�� String n	�

public void unlockResources�String n�� String n	�

public void lockResources�String n�� String n	� String n
�

public void unlockResources�String n�� String n	� String n
�

public void lockResources�Straw r�� Straw r	�

public void unlockResources�Straw r�� Straw r	�

public void lockResources�Straw r�� Straw r	� Straw r
�

public void unlockResources�Straw r�� Straw r	� Straw r
�

����� Object Creator Service

HsObjectCreatorService is responsible for the creation and permanent storage of

Straw objects� Due to the existence of various kinds of Straws� as well as the need

to enforce several data invariants� HsObjectCreatorService has grown to a signi�cant

degree of sophistication� This subsection will describe the changes made recently to

support needle and straw label immutability�

Immutability Issues

Until recently� data in needles could be modi�ed� After it was decided that data

in needles should be immutable� we needed a way to enforce this� Speci�cally� the

setData method had to be removed and needle data had to be speci�ed at creation

time� In order to accommodate this� creation methods of the HsObjectCreatorService

had to be rewritten�

Similarly� when labels were introduced in all straws� and it was decided that labels

should be immutable� creation methods had to be modi�ed� In addition� we had to

�

ensure that the type of the data passed to a needle corresponded to one of the existing

needle types� This condition could be checked either at run or compile time� For the

sake of early error detection� we do the checking at compile time� To this end� separate

methods were created� one for each type of Needle� that explicitly state the type of

needle data in their signature�

Straw Creation Methods

As a result of all of the above considerations� the following methods had been imple�

mented in the object creator service�

� public Tie newTie�String label� throws LabelException

Creates a new tie with the speci�ed label� Throws LabelException if the label

is not a legal tie label �an example of an illegal tie label is �Bale���

� public Bale newBale�String label� throws LabelException

Creates a new bale with the speci�ed label� Throws LabelException if the

label is not a legal bale label�

� public Needle newNeedle�String label� byte data��� throws LabelException

public Needle newNeedle�String label� Date data� throws LabelException

public Needle newNeedle�String label� HaystackFile data� throws LabelException

public Needle newNeedle�String label� Float data� throws LabelException

public Needle newNeedle�String label� MIMEData data� throws LabelException

public Needle newNeedle�String label� String data� throws LabelException

public Needle newNeedle�String label� URL data� throws LabelException

These methods create a new Needle of the speci�ed type �e�g� the last method

creates the object of type object�needle�HayURL�� Explicit typing of the needle

data �instead of passing an Object to a generic newNeedle method� prevents

the programmer from passing an object for which a needle type does not exist�

If needles were created with a generic newNeedle method� a run�time error could

be possible� With explicit typing� error checking is done at compile time�

��

�� Implementation of Straw Typing

This section describes the implementation of straw typing in Haystack�

Java�based Typing vs Label�based Typing

While the need for straw typing has never been disputed� various opinions existed on

how to implement it� Two approaches could be used to implement straw typing� First�

we could use Java typing� In other words� we could create a separate class for each

sub�type of straws� Alternatively� we could implement our own typing� Label�bases

typing is one possible way of doing that�

Until recently� Haystack had been using a hybrid of these two options� Although

mostly Java typing was used� labels existed for some subclasses of straws� Haystack

needs to support dynamic type creation �for example the user should be able to

create a new type of a tie�� and that is impossible with Java�based typing� However�

Java�based typing was used whenever possible for the following two reasons� ��� label�

based typing was believed to be signi�cantly inferior to Java�based typing in terms of

performance� and ��� Java already implemented inheritance and other nice features

of typing�

As Haystack grew in size� the number of classes that implemented a particular

straw type grew signi�cantly� It was increasingly inconvenient to go through dozens of

nearly identical �les in order to implement a minimal change� In addition� compiling

took a long time� Finally� we had to support label�based typing anyway for cases when

labels where used� The near�consensus that emerged eventually was that Haystack

was to stop relying on Java typing� and all typing had to be carried out through

labels� This decision had a number of consequences� First� a large number of classes

that essentially played the role of type placeholders were no longer necessary� Second�

each straw object needed to have a label� Third� a number of services that used the

properties of typing had to be revised� most notably HsDispatcherService� All of

these changes were made in the past few months�

Right now all typing is based on labels� The move away from Java�based typing did

��

not cause a noticeable degradation of performance� Even though we still implement

certain straw types as di	erent Java classes� �for need of di	erent functionality�� this

has nothing to do with the implementation of straw typing�

Immutability of Labels

Once a straw of a particular type has been created� the type of the straw may not

change� This is because too many services make decisions based on the typing of that

straw� and it would be hard to ensure the persistence of invariants after type change�

As a way of ensuring that labels could not be mutated� the type of a straw �i�e� the

label� should be passed to the straw constructor �see section ���� for details about

how straws are created�� Finally� no method exists to alter a straw label�

Label Naming Conventions

In order to avoid discrepancies among the developers� the following conventions are

used when creating a label� A label must be composed of one or more sub�labels�

concatenated by a dot� for example �Needle�HayFile�Text�� A sub label may be a

simple word ��Text�� or a concatenation of several words ��CreateDate���

Haystack is case�sensitive when it comes to straw labels� All words that compose

a sub�label must start with a capital letter �e�g� �Createdate� should not be used��

In case of an abbreviation� e�g� �HTML�� special care must be taken to make sure

that word capitalization is used consistently�

�These classes are object�Tie�java� object�Bale�java� object�Needle�java�

object�needle�HayByteArray�java� object�needle�HayDate�java�

object�needle�HayFile�java� object�needle�HayFloat�java�

object�needle�HayMIMEData�java� object�needle�HayString�java�

object�needle�HayURL�java�

��

Chapter 	

Tasks for the Future

This chapter outlines some of the tasks facing Haystack developers in the near future�

The reader should note that the theses by Adar and Asdoorian ��� �� also contain

a number of excellent ideas� some of which remain unimplemented� This chapter

starts with a section on future developments which discusses possible applications of

pro�ling and the improvements related to the user interface� The second section of

this chapter deals with �xing some of the existing implementation problems� those of

robust shutdown� dependence on the ORO package� and persistent storage�

��� Future Developments

���� Applications of Pro�ling

Applying pro�ling techniques falls outside the scope of this project� However� it is my

hope that pro�ling capabilities will be used for user adaptation in the future� Below

are a few examples of how that can be done�

� By combining the pro�les of documents contained in Haystack� we can generate

a pro�le of user interests in general� In fact� a �rst approximation of such a

pro�le is already implemented in Haystack� The pro�le has key �AllTextNee�

dles� and it is computed from all needles of type �Needle�HayFile�Text�� Once

we have a user pro�le� we can use the dot product to assess the relevance of a

��

new document to user interests�

� The ability to create and manipulate word pro�les leads to far�reaching capa�

bilities for creating a highly perceptive information environment� For example�

by keeping a combined pro�le of documents viewed in the past �fteen min�

utes� Haystack can be aware of the current activity of the user� and utilize this

knowledge to sort results of Haystack or web search queries�

� Another use of pro�les would be to help the user keep track of her activities

on di	erent days� Haystack can compute a pro�le of documents accessed on

a certain day� and then select a few words most signi�cant to that pro�le to

summarize user activity for that day� Ability to keep track of user activities can

help the user manage her time better�

� Haystack can apply user information expressed by pro�les to improve Internet

search and the search of documents in Haystack� We can use user information

to post�process queries or pre�process query results�

���� User Interface Improvements

I believe that in the near future� the user interface �UI� will become a greater driving

force in the development of core services� In order to streamline Haystack develop�

ment� the core services should be modi�ed early so that the capabilities needed by the

UI will be ready as soon as they can be used� One of such capabilities is dynamic type

creation� In particular� a user has to be able to create a new type of tie� Haystack

maintains a list of legal tie types� Right now this list is static� it should be made

dynamic�

Another possible improvement related to the UI has to do with Haystack�s inten�

tion to improve the e	ectiveness of queries based on user�s data �les� To accomplish

that� we need individual query logs� Then� we can use machine learning to analyze

whether having user �les can help improve querying� To this end� Haystack could

implement� among other things� custom AltaVista and Yahoo query pages that would

��

remember the query and response� and also identify the person doing the query�

��� Fixing Existing Implementation Problems

���� Robust Shutdown

Since Haystack is a multi�threaded and event�driven application� graceful termination

of all threads at user request imposes a number of requirements on the design of the

system� All transient information should be kept in a format that allows for easy

serialization and saving to disk� A central authority should keep track of all the

running threads� and be able to signal to these threads that they must terminate�

Since the threads may have to use resources managed by other threads� it is important

that the latter threads be terminated only after the former complete their work� In

order to ensure that all of these conditions hold true� Haystack programmers need

to examine that ��� the services that bootstrap other services �HaystackRootServer�

HsDispatcher� etc�� are implemented correctly� and ��� each service has a correct

implementation of the close�� method�

���� Dependence on the ORO Package

As was mentioned previously� Haystack has been relying on the package called ORO

�Original Reusable Objects� to implement regular expression search� The creators

of ORO seem to have abandoned their product� and it is unclear whether ORO

will remain to work with the newer releases of JDK� I believe that Haystack should

eliminate its dependence on ORO� and in the course of this thesis project� such

dependence has been reduced signi�cantly� One of the tasks for the near future is

to amend the few remaining modules that still rely on ORO� ORO matching can

either be replaced using the methods of class java�lang�String� or� if the matching

is complex� by using one of GNU�s regular expression packages��

�Two regular expression packages are available under the GNU General Public License at
http���www�cacas�org��wes�java� and http���www�crocodile�org��sts�Rex��

��

���� Database Management

At the present time� straws are stored in a single �le managed by the database

management module� called DBM� This module has been borrowed from the freely

available source code of WC�s Jigsaw web browser� I believe that the DBM module is

inadequate to Haystack�s needs� In particular� DBM�s lack of scalability is a problem

because Haystack aims to incorporate large amounts of data over long periods of time�

Also� the DBM module appears to lack su�cient robustness� particularly at the time

of Haystack shutdown� when all persistent data gets written to the disk�

It has been proposed to implement persistent storage of straws using a real

database� for example� mySQL� I support this idea� However� I feel that the task

may prove more complex than it appears to be and we should not attempt the task

before a detailed design has been proposed and su�cient programming resources al�

located� In particular� we must be careful not to repeat the mistake with ORO� i�e�

getting involved with a product that faces the risk of being discontinued� We should

also be judicious in using the database capabilities because having a data model of

our own gives us the potential for innovation�

Another way we could use a database is to collect data on the usage of Haystack�

e�g� query logs� browsing history� etc� Once Haystack begins to be extensively used� a

substantial amount of such data will become available� Databases provide a standard

solution for managing usage data� Subsequently� we could employ machine learning

to improve Haystack�s user adaptability�

��

Chapter

Conclusion

In the course of this thesis� we have described the structure and the implementation of

the data model� We have also discussed a range of issues regarding the use of the data

model� We established the role of a bale as a representation of a complex relationship

that might also be viewed as a collection of smaller� homogeneous relationships� We

also concluded that a document should be represented as a bale�

The move to label�based typing has reduced the number of �les in Haystack by

��� and made it possible to dynamically add straw types� Label�based typing also

simpli�ed star graph matching� which is now ���� Java independent of any outside

packages �ORO��

Haystack was made more robust by reorganizing and simplifying the archiving

process� The extractor services now work� partly due to further speci�cations in

the data model �no more confusion between the roles of ties and needles�� Due to

minor improvements in the code throughout Haystack� operations on the data graph

are easier� Finally more error conditions are caught at compile�time as opposed to

run�time� which should make Haystack more robust�

Lastly� a capability to create and manipulate word�frequency pro�les is now in

place� paving the way to greater user adaptability� In fact� a pro�le of all text docu�

ments of a user is already being computed and can be used as an expression of user

interests�

All of these changes open the road to the work on user adaptability� novel in�

��

formation presentation techniques and more e	ective information retrieval� It is my

hope that the work described in this thesis will endure� and that the full potential of

the Haystack project will be realized�

��

Appendix A

Data Model Implementation

This appendix provides some implementation details of the data model� These details

are primarily of interest to Haystack developers and they were left out of the main

body of this thesis for the sake of the general audience� This appendix consists of

three sections dealing with needles� ties and MIMEData types�

�

Table A��� Needle Types

Needle Type The object it wraps around Description
Needle�HayByteArray byte��
Needle�HayDate java�util�Date
Needle�HayFile haystack�object�HaystackFile A �le or a promise �see section ����
Needle�HayFloat java�lang�Float A
oating point number
Needle�HayString java�lang�String
Needle�HayURL java�net�URL
Needle�HayMIMEData haystack�object�MIMEData

A�� Needles

Needles wrap around �real� data objects � strings� numbers� �les� etc� In fact�

needles can wrap around any type of a Java object� Needle types can be identi�ed

by the kind of object they wrap around� Table A�� shows the types of needles that

are currently present��

Note that all needle types are pre�xed with �Hay� in order to avoid name collision

between the needle class and the class being wrapped around�

�Note that types in Table A�� are the only types of objects that can be stored in a needle� In
order for a needle to be able to wrap around more types� new classes would have to be created� Also
changes would have to be made to the object creator service and possibly other services�

��

Table A��� Tie Types

Tie Type Can Point From Can Point To
Author Bale Needle�HayString
Body Bale Needle
Contains Bale Bale
DocType Bale Needle�HayMIMEData
Filename Bale Needle�HayString
CreateDate Bale Needle�HayDate
LastIndexDate Bale Needle�HayDate
Location Bale Needle�HayURL
MatchesQuery Bale Bale �Query�
References Bale Bale or Needle�HayURL
QueryResultSet Bale �Query� Bale �QueryResultSet�
QueryScore Tie�MatchesQuery Needle�HayFloat
QueryString Bale �Query� Needle�HayString
SimilarText Bale Bale
Text Bale Needle�HayFile or Needle�HayString
Title Bale Needle�HayString

A�� Ties

A tie connects one straw to another and expresses the relation of the �from� straw

to the �to� straw� Table A�� lists some of the important tie types currently in use�

This table is not complete but can give the reader a general idea of what kind of ties

exist right now and how they are used�

There are conventions about when and how certain types of ties must be used�

These conventions are needed so that services know which tie to follow to get certain

data� For example� it is agreed that if a document bale has a location� this bale will

have a �Tie�Location� tie leading to the needle expressing the location�

In general� we can say which types of straws a particular kind of tie can connect�

The second and third columns in Table A�� show the types of �from� and �to� straws�

For example� the table indicates that an Author tie always leads from a �Bale� to a

�Needle�HayString� �or a subtype of �Needle�HayString���

��

Table A�� MIME Types

DocType Explanation
Needle�HayMIMEData�BABYL Emacs mail archive
Needle�HayMIMEData�Directory
Needle�HayMIMEData�Dvi
Needle�HayMIMEData�GZIP GNU compress utility
Needle�HayMIMEData�Gif
Needle�HayMIMEData�HTML
Needle�HayMIMEData�Latex
Needle�HayMIMEData�Postscript
Needle�HayMIMEData�Tar
Needle�HayMIMEData�Text Plain Text
Needle�HayMIMEData�UUE UU Encoded archive
Needle�HayMIMEData�Unknown A document whose type is not known

A�� MIMEData Types

Table A� shows a list of HayMIMEData subtypes presently used in Haystack� MIME�

Data subtypes are used to express document formats�

��

Bibliography

��� Eytan Adar� Hybrid�search and storage of semi�structured information� Master�s

project� Massachusetts Institute of Technology� Department of Computer Science

and Electrical Engineering� May �����

��� Mark Asdoorian� Data manipulation services in the haystack ir system� Master�s

project� Massachusetts Institute of Technology� Department of Computer Science

and Electrical Engineering� May �����

�� Marko Balabanovic� Yoav Shoham� and Yeogirl Yun� An adaptive agent for

automated web browsing� Journal of Visual Communication and Image Repre�

sentation� ����� December �����

��� Dallan Quass et al� Lore� a lightweight object repository for semistructured data�

In Proceedings of theACM SIGMOD International Conference on Management

of Data� volume ��� � of ACM SIGMOD Record� pages ��� ���� New York� June

����� ACM Press�

��� R� Iannella� Metadata repositories using PICS� Lecture Notes in Computer

Science� ������ ��� �����

��� Eric Miller� An introduction to the resource description framework� Technical

Report may���miller� D�Lib Magazine� May ��� �����

��� ISearch� http���www�isearch�com��

��� Blueridge� http���www�blueridge�com��

��

��� Alta Vista Search Engine� http���www�altavista�com��

���� Stop words from the University of Glasgow web site�

http���www�dcs�gla�ac�uk�idom�ir resources�linguistic utils�stop words�

���� Michael J� Pazzani� Jack Muramatsu� and Daniel Billsus� Syskill and Webert�

Identifying interesting web sites� In Proceedings of the Thirteenth National Con�

ference on Arti�cial Intelligence and the Eighth Innovative Applications of Ar�

ti�cial Intelligence Conference� pages �� ��� Menlo Park� August ����� AAAI

Press � MIT Press�

���� M� F� Porter� An algorithm for su�x stripping� Program� ������� ��� �����

��� Han Reichgelt� Knowledge Representation� an AI prospective� Ablex Publishing

Corporation� �����

���� G� Salton� The SMART Retrieval System � Experiments in Automatic Document

Processing� Prentice Hall� �����

���� J� H� Saltzer� D� P� Reed� and D� D� Clark� End�to�end arguments in system

design� ACM Transactions on Computer Systems� �������� ���� November �����

���� Mark A� Sheldon� Content Routing� A Scalable Architecture for Network�Based

Information Discovery� PhD thesis� Massachusetts Institute of Technology� �����

���� Stuart Weibel� Metadata� the foundations of resource description� Technical

Report july���weibel� D�Lib Magazine� July �����

��

