
Metadata-supported Agent Infrastructure

Dennis Quan DQUAN@MIT.EDU
David F. Huynh DFHUYNH@AI.MIT.EDU
Vineet Sinha VINEET@AI.MIT.EDU
David Karger KARGER@THEORY.LCS.MIT.EDU

MIT Artificial Intelligence Laboratory, 200 Technology Square, Cambridge, MA 02139 USA

1. Introduction

Agents are often useful for allowing users to delegate tedi-
ous or complicated tasks to the system. In many systems,
multiple agents work in concert to achieve desired objec-
tives. In these environments, good communication and ef-
fective sharing of information between agents enable the
kind of synergy typically desired of multi-agent systems.
Haystack (Huynh et al., 2002), our personal information
repository, uses a shared semi-structured metadata store and
a system of agents for helping the user manage his or her
information. In order for agents in our system to communi-
cate with each other, interface specifications and endpoint
information (e.g., IP address, protocol, etc.) need to be made
available. Agents can request this information from the
shared metadata repository and submit updates when agents
are created, moved, or destroyed.

Additionally, most agent systems utilize shared information
spaces for exchanging data, such as those based on a black-
board architecture. A common hindrance is the need to settle
on a handful of common protocols for exchanging informa-
tion with one another. Many solutions have required either
reliance on language-specific solutions, such as Java RMI,
or object brokers such as CORBA. In these systems, the
interface and instance information for agents is separated
from the data they produce, making it difficult to declara-
tively predicate agent invocation on the property of a par-
ticular datum in the shared information space. Additionally,
by representing data according to a class hierarchy, one
loses the ability to perform relational queries.

By using a database to store both interface information and
shared data, our system gives agents a unified abstraction
for accepting information from other agents, producing in-
formation for other agents, and locating other agents in the
system. As a result, we believe that a centralized repository
for storing agent state and interface information can be used
to consolidate the functionalities of a component directory
and a separate database. Furthermore, our semi-structured
data model permits arbitrary flexibility in describing agents,

yielding benefits in how agents can be classified and se-
lected for tasks. In this paper, we discuss the use of a meta-
data repository in facilitating an agent infrastructure.

2. Metadata

Metadata in the Haystack environment is expressed accord-
ing to the Resource Description Framework (RDF) (RDF,
1998). In essence, RDF is a format for describing semantic
networks or directed graphs with labeled edges. Nodes and
edges are named with uniform resource identifiers (URIs),
making them globally unique and thus useful in a distrib-
uted environment. Node URIs are used to represent objects,
such as web pages, people, agents, and documents. A di-
rected edge connecting two nodes expresses a relationship,
given by the URI of the edge. A standard called RDF
Schema (RDF Schema, 1999) specifies a way for schema
writers to define meanings for these edge URIs, which are
called RDF properties. Because URIs are globally unique
(like Java package names, typically URIs are generated to
include an Internet domain name), the possibility of name-
space conflict is negligible. A URI can be used as a “con-
tract” since its use implies consistency with the semantics
provided by the party defining the URI.

3. Communication Protocol

Applying RDF to describing agent interface, protocol, and
endpoint metadata can be done by leveraging existing stan-
dards. A specification called Web Services Description Lan-
guage (WSDL) (Christensen et al., 2001) already provides
an XML-based format for describing this metadata. When
the XML tags in WSDL are expressed as RDF properties,
the querying of connectivity metadata becomes simply a
special case of a more general RDF query mechanism ex-
posed by an RDF metadata store. Additionally, by defining
custom RDF properties developers can annotate agent de-
scriptions with arbitrary attributes, such as reliability, physi-
cal location, or even degrees of user preference.

The abstract agent communication protocol adopted by
Haystack is extremely general and able to accommodate
many popular protocols, including HTTP GET, SOAP, Java
interfaces, and Metaglue. Building upon WSDL, Haystack
specifies that agents be able to handle method calls, where
methods are named either by a URI or a string (in the case
of a Java interface). In addition, methods can take any num-
ber of ordered and URI-named parameters and similarly
return any number of ordered and URI-named return values.

4. RDF Store

Perhaps the most central agent in Haystack is the RDF store.
RDF stores act as metadata databases for the other agents in
the system. Agents in Haystack typically use an RDF store
to persist their internal state. RDF stores expose a standard-
ized interface with methods for adding, querying, and re-
moving metadata, allowing RDF stores to be replaced with-
out affecting client-side access code.

RDF stores can serve many roles previously held by more
specialized servers. For example, the contents of network
directories, such as LDAP servers and UDDI servers, can be
easily described in RDF and stored in RDF stores. Describ-
ing this information in RDF also gives the added benefit of
being able to store many kinds of user-defined attributes.
Additionally, the support for declarative event triggering
upon data mutation accommodates the need for agents to be
notified when certain forms of data appear.

5. Bootstrapping

When Haystack is started, a component known as the agent
host reads an initialization script that tells the system which
agents to start. This script also indicates where to find the
primary RDF store and how to start it. This primary RDF
store is analogous to the root filesystem on a UNIX machine.
Agents can only run from within an agent host, and the as-
signment of agents to the agent hosts is specified in the pri-
mary RDF store. If a change is made in this store assigning
an agent to another agent host, perhaps on a different ma-
chine, then the agent would migrate to the other machine.

6. Currently Implemented Agents

Agents in Haystack serve many purposes. Modern informa-
tion retrieval algorithms are capable of grouping documents
by similarity or other metrics, and previous work has found
these automatic classifications to be useful in many situa-
tions. Agents are used in Haystack to automatically retrieve
and process information from various sources, such as e-
mail, calendars, the World Wide Web, etc. By storing infor-
mation in the RDF store, agents are able to seamlessly build

upon the work of other agents. For example, retrieving e-
mail typically starts with the POP3 agent contacting a POP3
server and downloading e-mail into the shared repository.
Text extraction agents notice the downloaded e-mail and can
convert HTML-formatted mail into plaintext. Clustering and
classification agents are able to use the plaintext representa-
tions to automatically organize the e-mail into different
categories within the same repository. Finally, the inbox
agent watches over this e-mail and could potentially bring
an item to the user’s attention if it appears an important
message has not yet been viewed by the user.

7. Writing Agents

In a system such as Haystack, a sizeable amount of code is
devoted to creation and manipulation of RDF-encoded
metadata. We observed early on that the development of a
language that facilitated the types of operations we fre-
quently perform with RDF would greatly increase our pro-
ductivity. As a result, we have created Adenine, which in-
cludes native support for RDF data types and facilitates in-
teraction with RDF stores and agents. Some Haystack
agents are implemented entirely in Adenine. Specific infor-
mation on the language, along with more comprehensive
motivating remarks, can be found in (Quan et al., 2002).

References

Christensen, E. et al. (2001). Web Services Description Lan-
guage (WSDL) 1.1. http://www.w3.org/TR/wsdl.

Huynh, D., Karger, D., and Quan, D. (2002). Haystack: A
Platform for Creating, Organizing and Visualizing Infor-
mation Using RDF. Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002).
Honolulu, HI.
http://haystack.lcs.mit.edu/papers/sww02.pdf.

Quan, D., Huynh, D., Sinha, V., and Karger, D. (2002).
Adenine: A Metadata Programming Language. Student
Oxygen Workshop 2002 (SOW2002). Gloucester, MA.

Resource Description Framework (RDF) Model and Syntax
Specification. (1999). http://www.w3.org/TR/1999/REC-
rdf-syntax-19990222/.

Resource Description Framework (RDF) Schema Specifica-
tion. (1998). http://www.w3.org/TR/1998/WD-rdf-
schema/.

Acknowledgements

This work was supported by the MIT-NTT collaboration,
the MIT Oxygen project, a Packard Foundation fellowship,
and IBM.

