
Empirical Development of
an Exponential Probabilistic Model for Text Retrieval

Using Textual Analysis to Build a Better Model

Jaime Teevan
MIT AI Lab

Cambridge, MA 02139

teevan@ai.mit.edu

David R. Karger
MIT LCS

Cambridge, MA 02139

karger@theory.lcs.mit.edu

ABSTRACT
Much work in information retrieval focuses on using a model
of documents and queries to derive retrieval algorithms. Model
based development is a useful alternative to heuristic devel-
opment because in a model the assumptions are explicit and
can be examined and refined independent of the particular
retrieval algorithm. We explore the explicit assumptions un-
derlying the näıve Bayesian framework by performing com-
putational analysis of actual corpora and queries to devise a
generative document model that closely matches text. Our
thesis is that a model so developed will be more accurate
than existing models, and thus more useful in retrieval, as
well as other applications. We test this by learning from a
corpus the best document model. We find the learned model
better predicts the existence of text data and has improved
performance on certain IR tasks.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—retrieval models

General Terms
Experimentation

Keywords
Information Retrieval, Formal Models, Machine Learning

1. INTRODUCTION
The goal of information retrieval (IR) is to determine

which documents are relevant to a user’s information need.
In early IR work, this determination was based on heuristic
judgments [17] (e.g., that documents containing the user’s
query terms are likely to be relevant) followed by heuris-
tic tweaking of parameters (e.g., term weights) to make the
system work. Subsequently, attempts were made to avoid,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGIR’03, July28–August1, 2003, Toronto, Canada.
Copyright 2003 ACM 1-58113-646-3/03/0007 ...$5.00.

or at least make explicit, these heuristic judgments by de-
veloping models of queries and documents that could be
used to deduce appropriate retrieval strategies. For exam-
ple, probabilistic models are a common type of model used
for IR. They posit that relevant and irrelevant documents
are generated from probability distributions and use these
distributions to determine probabilities of relevance for each
document. They return, in accordance with the Probabil-
ity Ranking Principle [23], documents with high relevance
probabilities.

Even when model-based approaches fail to improve re-
trieval, they provide a useful approach to understanding
text. The models can be tested against actual corpora, gen-
eralized to other applications, and may even, in their charac-
terization of text, suggest promising performance-improving
heuristics. However, while probabilistic models are intu-
itively appealing and easy to work with, relatively little at-
tempt has been made to test the accuracy of their assump-
tions against text data. Often a model is developed without
reference to the data; the only actual interaction with text
is when testing a particular retrieval system based on the
model (e.g., [8, 15, 22]). At that point it is difficult to de-
cide whether unsatisfactory retrieval is due to the retrieval
system or the underlying model.

In this work our primary goal is to develop a generative
probabilistic model that better describes text, and we rely on
this better model to improve retrieval. Some previous work
has tried to match underlying model assumptions closely to
text through manual analysis of a small number of terms [2,
14]. In contrast, we match the assumptions to text computa-
tionally using a large text corpus (TREC). Thus, though we
restrict ourselves throughout our analysis to näıve Bayesian
models, we are able to significantly relax some of the as-
sumptions of standard probabilistic models and computa-
tionally explore a much larger space of possible models.

Our hope is that improvements to the model will propa-
gate through any model-based retrieval algorithm, yielding
better performance in retrieval. This hope is not always ful-
filled, as has been illustrated by the relatively unsuccessful
attempts to allow for term dependencies in retrieval [12].
Still, by focusing on a few empirically inaccurate and easily
correctable flaws in current models, we find we are able to
improve our model’s performance on certain IR tasks.

We begin by discussing relevant work in model-based re-
trieval. We then give a quick overview of Bayesian machine
learning and näıve Bayesian retrieval. We briefly exam-

ine the well-known multinomial model, which assumes that
terms in a document follow a multinomial distribution, and
show that this model unavoidably diverges from the actual
statistics of text. We then discuss how we identify, via ex-
amination of the corpus, a better model chosen from a class
known as the one-parameter exponential families, which in-
cludes the multinomial model as one instance. We conclude
with a discussion of how to use this improved model for
retrieval and present experimental results.

2. RELATED WORK
While the statistical properties of text corpora are funda-

mental to the use of probabilistic models, as well as to the
use of other recent models [19, 21], the statistical properties
have not necessarily been fundamental to the models’ de-
velopment, nor to understanding their assumptions. Most
IR models do attempt to minimize unfounded assumptions,
although often without understanding which ones actually
are unfounded. For example, Jin, Hauptmann and Zhai [10]
suggested using the probability a query would be the ti-
tle of a document to rank documents, without investigating
whether queries look anything like document titles.

Early IR systems did place focus on text during their de-
velopment. For example, Sparck Jones [11] used analysis
of three small corpora to suggest the use of inverse docu-
ment frequency for term weighting, now a common practice,
based on textual analysis. Recently, people have revisited
textual analysis on newer and larger data sets. For exam-
ple, Greiff [7] suggested improvements to tf.idf by studying
85,000 Associated Press articles from TREC. Because prob-
abilistic models have explicit assumptions that make such
textual analysis straightforward, some recent work has also
been applied within a probabilistic framework. Church and
Gale [2] and Katz [14] both look at empirical term distri-
butions to build better models. The work presented here
takes textual analysis a step further by, instead of imposing
a model based on analysis, learning one computationally.

We derive our model within the well studied näıve Bayesian
framework, of which Lewis provides a good overview [16].
Within this framework, researchers have considered a num-
ber of term distribution families to model text, with the
selection sometimes based on textual analysis [2, 14]. Distri-
butions that have been explored include binomial [5], multi-
nomial [13, 16], Poisson [22], Poisson mixtures [2] and more
[3]. The work we present here differs from this earlier näıve
Bayesian work because we do not restrict our model to a
particular family within the framework, but rather learn the
best family from the text.

To learn the best distribution family, and thus our model,
we do semi-parametric analysis of a single-parameter expo-
nential family distribution, and there is substantial relevant
statistical and machine learning literature on this [1, 6, 9].
Previously, attempts have been made to learn IR model pa-
rameters from text [24], but such work has not focused on
learning the actual model.

In learning the model, we use relevance judgments on past
queries in a principled way to devise a retrieval strategy for
future queries. Thus our work serves as an instance of cross
query learning. Similarly, Fitzpatrick and Dent [4] used tex-
tually similar past queries for relevance feedback. In con-
trast to their work, rather than using topically related past
queries within a specific model, we use all past queries to
teach us an overall document model for relevant documents.

3. A BRIEF BAYESIAN TUTORIAL
Our approach is motivated by the standard Bayesian ma-

chine learning framework. In this section, we discuss that
framework in order to lay the groundwork for our approach.
Due to space constraints, we focus on the “what” and give
short shrift to the “why” of this approach; such material can
be found in several sources [1, 9].

We begin with the assumption that relevant and irrelevant
documents for a query are drawn from two distinct proba-
bility distributions. Let d denote a random document, and
variable r has the value one if a document is relevant and
zero otherwise. Then Pr(d | r = 1) (resp. Pr(d | r = 0))
denotes the probability that a randomly generated relevant
(resp. irrelevant) document turns out to be d. The Proba-
bility Ranking Principle [23] suggests that documents should
be ranked for the user in order of their probabilities of rele-
vance, Pr(r = 1 | d). A standard application of Bayes Law
shows that this ranking is independent of Pr(r = 1) and
monotonic in a ranking value (RV)

Pr(d | r = 1)

Pr(d | r = 0)
.

In practice, while the probability distributions above are
assumed to exist, they are not known at the time of retrieval.
Bayesian machine learning provides a principled way to es-
timate these distributions based on data such as an input
query or labeled documents. To estimate the desired dis-
tributions, we assume that the correct distribution is one
member of some specific family of distributions and, based
on the query-related information provided, we attempt to
choose a plausible distribution from that family.

Two questions must be answered to use this approach: (i)
what family of distributions is used (a modeling question),
and (ii) which distribution to choose from the family given
the data (a model-fitting question). As an example of what
not to do, we could take our relevant-document distribution
to be a uniform distribution on the set of labeled relevant
documents. This would be an extreme example of over-
fitting: the distribution would perfectly explain the labeled
documents we had seen, but assign a zero probability to
any document we had not seen. Such a distribution would
be useless for predicting the relevance of other documents.

To avoid over-fitting, the standard approach in machine
learning is to use a prior. A prior is a probability distribu-
tion over possible probability distributions. In other words,
we label the possible probability distributions by some pa-
rameter θ and then specify a prior Pr(θ). When presented
with some labeled data D drawn from the unknown distri-
bution, we choose as a plausible distribution the most likely
value of θ, i.e. argmaxθ Pr(θ | D). This standard approach
is referred to as Maximum A Posteriori (MAP) estimation.
As an example, nearly every probabilistic model assigns a
prior that forces some nonzero probability onto every term
in the corpus, even if the term does not appear in the labeled
data.

Ignoring algorithmic issues, the only thing needed in a
Bayesian machine learning approach to labeling documents
is a prior over probability distributions of relevant and ir-
relevant documents and some information, such as labeled
data, for selecting a distribution. While in practice it is stan-
dard to only address the model-fitting question (ii) through
machine learning, we also address the modeling question (i).

4. EXAMPLE: MULTINOMIAL MODEL
As a concrete example, the multinomial model [13, 16]

assumes that the family of probability distributions is pre-
cisely the set of multinomial distributions over words. A
document is considered to be generated by repeated inde-
pendent sampling from a probability distribution of words
in the corpus. Under such a model, the probability distri-
bution for the number of times dt that term t appears in a
document is

Pr(dt | r = x) =

(

`

dt

)

(θr=x
t)dt (1 − θr=x

t)`−dt , (1)

where ` is the document length. Within this family, choosing
θr=x

t sets the particular distribution for each term.
The multinomial model is very simple, but not very good.

The inadequacies of this model are well known, and can
be found in the detailed analysis done by Church and Gale
[2] and Katz [14]. However, their analysis was done over
small sets of terms that were considered to have high content
value, while we want the model we build to describe typical
terms. For this reason, we briefly revisit the inadequacies
of the multinomial model, looking at term distributions for
hundreds of thousands of terms instead of just hundreds.
Our analysis gives us an understanding of the corpus we are
working with and a baseline to compare with as we improve
on the multinomial model.

The quality of predictions made using a model (family of
distributions) depends on how well the distribution selected
from the model matches the actual unknown distribution. A
bad match may arise from learning the distribution poorly,
but a more fundamental barrier arises if the family contains
no distributions similar to the real distribution. In that
case, no learning algorithm could find a good match. The
standard way to measure the fit of a distribution to some
data is to ask how likely that data was to be generated by
the distribution. In this framework, the best fit distribution
in the model is the maximum likelihood distribution, which
assigns the maximum probability to the observed data; the
higher the probability, the better the fit. Because our goal in
this case is to investigate the existence of a good distribution
in the model, as opposed to using the distribution, we have
no need to worry about over-fitting, and do not use a prior.
For the multinomial model, in the absence of a prior, the
maximum likelihood parameter setting for θt, is the average
rate of appearance of term t in the labeled data.

We evaluated how well the multinomial family captured
the statistical properties of a particular corpus, TREC 1
and 2. We fit a multinomial model to the corpus and then
compared the fit model to reality. Our overall goal was
to determine how similar to multinomial distributions the
observed distributions of terms in documents were. Since
a multinomial distribution depends on document length as
well as its probability parameter, we focused on two sets of
10,000 and 25,000 documents of similar length. Even if a
term were drawn from a multinomial distribution, its em-
pirical distribution might not look multinomial. For this
reason, we average observed distributions of many “similar”
terms to smooth out noise. Because for multinomial distri-
butions the actual rate of occurrence is tightly concentrated
around its expected number of occurrence, we considered
terms similar if they had similar rates of occurrence.

Figure 1 shows, on a log scale, the empirical term distribu-

0 1 2 3 4 5
10

−20

10
−15

10
−10

10
−5

10
0

Term occurs exactly x times

P
ro

ba
bi

lit
y

Data
Multinomial
New Model

Figure 1: The empirical term distribution shows

terms are more clustered compared to what would

be expected for the multinomial model.

tions found by averaging 500 terms that appear 15 times out
of 3 million possible times in a corpus of 25,000 documents
of similar length. This is compared with the maximum like-
lihood multinomial distribution for terms with the same rate
of occurrence. The empirical distribution has a much heav-
ier tail than the multinomial. That is, for the given aver-
age number of occurrences, the probability of multiple oc-
currences of a term in a document is much higher than a
multinomial model would expect. The multinomial model
assumes that whether a term occurs again in a document
independent of whether it has already occurred, but clearly
from Figure 1 this is an inaccurate assumption.1 This be-
havior, also called “burstiness”, that we found over a large
number of terms in a large corpus is consistent with what
others have observed [14, 2] through more in depth analysis
on fewer “content” terms appearing in smaller corpora.

5. CANDIDATES FOR A BETTER MODEL
Given the failure of the multinomial model to match the

text, we sought a better model. However, we wanted to
preserve two important features of the multinomial model.
First, computations over it, and in particular retrieval al-
gorithms using it, are very efficient. Second, its relatively
small collection of distributions prevents over-fitting. We
therefore chose to focus on näıve Bayesian models [16] con-
structed from one parameter exponential families.

5.1 Naı̈ve Bayesian Models
While all probabilistic models assume that a document

can be statistically described by certain features (we assume
terms), and that the occurrence of those features is sufficient
to determine document relevance, a näıve Bayesian model
further assumes document terms are independent given a
relevance judgment. This is what makes näıve Bayesian
models efficient for retrieval. Many probabilistic IR mod-
els fit within the näıve Bayesian framework.

Because the term probabilities are independent, interac-
tions between terms are ignored. If document d has T terms,

1
While the empirical term distribution is not multinomial, the distri-

bution of its logarithm is roughly multinomial in shape. Applying the
standard machine learning paradigm to this multinomially distributed

quantity yields a variant of the standard vector space model, where
the weight of a term is set proportional to the log of its occurrence

count.

with the tth term represented as dt, the probability of ob-
serving the document given a relevance judgment is

Pr(d | r = x) =
T
∏

t=0

Pr(dt | r = x),

where Pr(dt | r = x) denotes the probability of seeing dt

occurrences of term t. While the independence assumption
is obviously an oversimplification, it is common and useful
because the number of terms in a corpus is typically very
large. Having to account for all possible interactions be-
tween terms would require an infeasible amount of time and
space, as well as an infeasible amount of data with which to
estimate those interactions.

Efficiency
By assuming that all features are independent, we can sim-
plify our ranking value (from Section 3) considerably.

RV =
Pr(d | r = 1)

Pr(d | r = 0)
=

T
∏

t=0

Pr(dt | r = 1)

Pr(dt | r = 0)
.

Taking the logarithm of this quantity, which helps avoid
numerical instability caused by multiplying numerous small
quantities, produces a sum of per term scores. Although the
above shows a score per term in the corpus, it is possible to
factor out the contributions of zero-occurrence terms and be
left with a sum only over terms appearing in the document
[22]. This sum can be evaluated with much the same effi-
ciency as a traditional vector space model (as can be seen,
for example, in Section 7.2.2).

Relation to the Multinomial Model
It should be noted that the multinomial model discussed in
Section 4 does does not fit our definition of a näıve Bayesian
model. Once the document length ` is fixed, a large num-
ber of occurrences of one term leaves fewer spaces for other
terms to occur, so distinct term occurrence counts are not
independent. However, the closely related Poisson model, in
which each term has an (independent) Poisson distribution

Pr(dt) = e−θtθdt

t /dt! does fit the näıve Bayes framework.
Like other näıve Bayesian models, the Poisson model does
not produce documents of a fixed length, rather, it produces
a distribution over document lengths.

Coping with Length
That näıve Bayesian models produce documents of varying
lengths can have undesirable consequences. The relevant
and irrelevant document distributions may induce different
document-length distributions, leading to questionable de-
ductions such as “short documents are more likely to be
relevant than long ones.” While such a conclusion may be
supportable, some prefer to apply length normalization to
eliminate this dependence, usually by ad hoc methods [3].

Length normalization can be pursued in a principled fash-
ion. From the näıve Bayesian model, we could derive an ap-
propriate and tractable length normalization scheme by con-
ditioning the probability distributions on the given length of
a document. Because in finding the probability of a doc-
ument we sum many small independent quantities (term
counts), the distribution of document lengths will be ap-
proximately Gaussian with computable mean and variance.
This would allow us to normalize for length by multiply-
ing each document’s relevant and irrelevant probability by

an easily computable length factor. At the present time, we
have not investigated this approach experimentally; instead,
for the remainder of the paper, we ignore length as an issue.

5.2 Exponential Families
Having chosen the näıve Bayesian framework, we still need

to define a family from which we can select probability dis-
tributions for the individual terms. We choose to limit the
possible distribution families to those that could describe
each term with a single parameter. This limitation rules
out many plausible distribution families, such as mixture
models. However, this restriction reduces the risk of over-
fitting, as there are fewer parameters to estimate with the
same amount of data, and makes for a simple and efficient
model that translates easily into a vector space model.

Narrowing further, we chose the set of one-parameter ex-
ponential families. Exponential families are popular in ma-
chine learning because they are quite general (the Poisson,
Binomial, Uniform, and Gaussian families are all exponen-
tial families) but can be optimized efficiently. Thus, much
work has been done on how to best work with such families
[1, 6]. For our application, they support efficient retrieval
with the same complexity as standard models. A one pa-
rameter exponential family takes the form

Pr(dt | φt) = f(dt)g(φt)e
φth(dt), (2)

where g(φt) is a normalizing constant equal to the inverse
of
∫

f(dt)exp (φth(dt)) ddt. Recall that dt is the number of
occurrences of term t. The functions f and h, which apply
in the same way to all terms, define the specific exponential
family. A particular distribution for a particular term is
specified from the family by setting the parameter φt. For
example, for a binomial model, f(dt) =

(

`

dt

)

and h(dt) = dt.

For a Poisson model f(dt) = (dt!)
−1 and h(dt) = dt. We

emphasize: the model is specified once by choice of f and h;
then, at retrieval time, learning is performed by fitting the
φt parameters.

6. HYPER-LEARNING A BETTER MODEL
Instead of imposing a particular exponential family, such

as the Poisson family, on the term distributions, we pro-
pose that the family should be determined experimentally,
directly from the data (the text, past queries and relevance
judgments). This process, of examining the entire corpus to
set the “hyper-parameters” f and h in our model, is similar
in style to learning the parameters φt from labeled infor-
mation; to distinguish it we call this preliminary process
hyper-learning. Given a hyper-learned model, it is then nec-
essary at retrieval time to learn the parameters that define
the specific term distributions within the family as relate
to the query (e.g., θt from Equation 1 for the multinomial
model). In this section we describe the hyper-learning pro-
cess. By hyper-learning a better distribution family over
the TREC corpus, we found a new model that increased the
burstiness of term occurrences and more accurately matched
our data.

6.1 Finding the Best Family
As discussed for the multinomial model, a standard mea-

sure of “fit” between a given distribution and some data is
the probability the distribution assigns to the data; within
a family, the “best fit” distribution is the one that assigns

maximum likelihood to the data. Formally, the quality of
a model is equal to the maximum likelihood value we can
achieve by choosing the specific term distributions by setting
of φt parameters. If we define Q(f, h, φt) to be the likeli-
hood assigned to the data by a particular distribution (φt)
from the model defined by f and h, then the best fit within
the model is maxφt

Q(f, h, φt). If we want to find the best
model, i.e. the one containing the best distribution for the
data, then we maximize the above quantity over choices of
f and h. We can conflate these two maximizations and find
our best model by taking the values f and h from

argmaxf,h,φt
Q(f, h, φt).

By setting φt to be the maximum likelihood value we risk
over-fitting. While this would not be a good setting for φt

when performing retrieval, where we want to predict future
data, it is acceptable in this case where we want to best
describe our existing data, especially because, as we will
discuss, there are very few f and h values.

Let us first consider how we would develop a model that
accurately explains a single set of documents, such as those
documents relevant to a particular query. Such a model is
unrealistic, as the goal of the hyper-learned model is to accu-
rately fit many queries, but is a good starting point. Recall
that the probability of observing an individual document can
be expressed as

∏T

t=0 Pr(dt | φt). To find the probability of
the entire document set we find the product Pr(dt | φt) over
all terms and all documents. Because dt is always a small
non-negative integer, and, in fact, is almost always zero, we
can, without losing almost any information, consider only
the cases where dt is less than some small integer k. Taking
nt

i to be the number of documents in which term t occurs i
times, we can express the probability of observing the entire
document set as

Q =
T
∏

t=0

k
∏

i=0

Pr(i | φt)
nt

i ,

Finding f and h is simply a matter of finding the 2(k + 1)
values the two functions take at each possible i to maximize
Q. In our experiments, we take k to be 5, but even a k of 2
covers describes 99.9% of all term occurrences.

However, our goal is to accurately fit many sets of doc-
uments, and not just one. To perform retrieval we would
like to model all sets of documents relevant to any query.
The approach remains much the same in this case. Our
training data is a collection of document sets, and in hyper-
learning we aim to fix values f and h that explain all of these
document sets. Each document set may reflect a different
distribution drawn from the model. Thus, we use a distinct
parameter φR

t for same term t in each document set R. If
R represents the class of document sets, and R ∈ R is a
particular document set, the objective function Q becomes

Q =
∏

R∈R

∏

d∈R

Pr(d | φR
t).

Because a term can have a different distribution in each
document set, we can treat the same term uniquely in each
set. This allows us to map this equation back to the single
document set equation. Thus, we focus our discussion on the
notationally simpler single-set formula, knowing it applies
equally to a collection of document sets.

The problem of optimizing Q is a large multivariate opti-
mization problem. There is no obvious analytic solution, so

we use computational methods, performing a simple gradi-
ent ascent. Given some fixed f and h values, it is straightfor-
ward to find (globally) optimum φt values. Similarly, given
fixed φt values, we can find the (locally) optimum functions
f and h. We iterate over these two procedures to find a
maximum. Because Q is convex in the parameters φt but
non-convex in the values f and h, we cannot guarantee gra-
dient ascent finds a globally optimum model. A better op-
timum could be found by combining a more sophisticated
non-convex optimization algorithm on the f and h values
with the fast and simple convex optimization of the φt val-
ues.

6.1.1 Finding the Best φt Given f and h

The probability of observing each document, and thus the
objective Q, is concave with respect to each parameter φt.
We prove concavity by showing that the second derivative of
log(Q) with respect to φt is negative. Note that because the
probabilities of term occurrences are small, we sometimes
work with log(Q) instead of Q. The second derivative of
log(Q) is

d2 log(Q)

dφt
2 = −N

k
∑

i=0

h(i)2 Pr(i | φt)

+ N

(

k
∑

i=0

h(i) Pr(i | φt)

)2

.

Since
∑k

i=0 h(i) Pr(i | φt) is equal to the expectation, E[h(i)],
we can rewrite the second derivative as

= −N(E[h(i)2] − E[h(i)]2)

= −NVar[h(i)].

Variance is never negative, so the second derivative is never
positive and log(Q) is concave with respect to φt.

It follows that if we know the functions f and h, we can
find the most likely φt for each term using convex optimiza-
tion. To find φt we do a simple bisection search to find where
first the derivative of log(Q) with respect to φt,

d log(Q)

dφt

=
k
∑

i=0

h(i)
(

nt
i − N Pr(i | φt)

)

,

is equal to zero.

6.1.2 Finding the Best f and h Given φt

Unlike for φt, the objective function is not convex in f
and h. Nonetheless, to find f and h we do a simple gradient
ascent to a local optimum, using

d log(Q)

dh(i)
=

T
∑

t=0

φt

(

nt
i − N Pr(i | φt)

)

and

d log(Q)

df(i)
=

1

f(i)

T
∑

t=0

(

nt
i − N Pr(i | φt)

)

,

the gradient functions, to aid our search.
Because log(Q) is not convex with respect to f and h,

where we start our learning is very important. If we do
not start somewhere good, we could converge to a poor lo-
cal maximum. As our starting point, we used the Poisson

dt 0 1 2 3 4 5

f 0.9121 0.0210 0.0034 0.0011 0.0005 0.0012
h -1.4235 2.0466 3.0635 3.4882 3.6882 3.7714

Table 1: The hyper-learned values for f and h.

family (f(i) = (i!)−1 and h(i) = i). The Poisson family
is commonly used to model term distributions and is the
exponential-family cousin of the multinomial family.

6.2 Data Set
We hyper-learned the family of term distributions over

sets of relevant documents. Each set was comprised of the
relevant documents for a particular query from TREC 1 and
2 (queries 51-150). The query result sets ranged from con-
taining just tens of documents and under a thousand unique
terms, to containing almost a thousand documents and tens
of thousands of unique terms.

We used sets of relevant documents for several reasons.
First, as we will discuss in Section 7.1, we consider the prob-
lem of understanding relevant document set distributions
more interesting for retrieval purposes than understanding
the corpus or irrelevant documents. Additionally, because
the set of all documents relevant to a query is considerably
smaller than all documents that are irrelevant to a query,
relevant document sets are also considerably more varied
within a given corpus than irrelevant document sets. The
largely overlapping irrelevant document sets would not allow
us to generalize well. Using the smaller relevant document
sets also made our analysis more computationally feasible.

6.3 The Hyper-Learned Model
The functions f and h we found by hyper-learning over

all 100 relevant document sets are shown in Table 1 and
Figure 2. Both f and h in the hyper-learned model are sub-
stantially different from their Poisson starting points. The
hyper-learned curve h is much flatter than the original Pois-
son function for nonzero x. This ensures that for any φ,
there is less of a difference in probability of multiple occur-
rences, and thus a heavier tail (more burstiness), than for
the Poisson model. Figure 1 illustrates this heavier tail on
an example distribution for the maximum likelihood setting
of φ, and suggests that the new distribution family does
more closely match our data.

0 1 2 3 4 5

10
−3

10
−2

10
−1

10
0

x

f(
x)

New Model
Poisson

0 1 2 3 4 5
−2

−1

0

1

2

3

4

5

x

h(
x)

New Model
Poisson

Figure 2: The functions f and h that define the

hyper-learned family, compared with those that de-

fine the Poisson family.

To test how good our hyper-learned model is, we did not
hyper-learn the best f and h over all 100 document sets,

but instead hyper-learned on a randomly selected “train-
ing” subset of the 100 relevant document sets. The model
we found when using fewer document sets was very simi-
lar to the one found using all 100 document sets, and by
not learning over all of the sets we were able to test our
model on the remaining “testing” sets. To test the model
quality we used a family hyper-learned over 40 query result
sets to predict the existence of the other 60 result sets. We
computed the maximum likelihood φt for each term from a
subset of the documents in the testing subset and then used
those specific term distributions to find the probability of
the remaining documents. The average log probability of
observing an unobserved relevant document set was much
higher using the hyper-learned family (-428,164) than us-
ing the Poisson family (-517,171). In other words, the new
model was less surprised than the Poisson model to see doc-
uments it had not seen before.

7. RETRIEVING WITH NEW MODEL
Given a better hyper-learned model, we turn to its use in

retrieval, text classification, and relevance feedback tasks.
We found that by improving the Poisson generative model
by hyper-learning from the text a better family of distribu-
tions, we were also able to improve retrieval performance.
In this section we first discuss how we estimated the model
parameters (φt) to perform the queries and then we present
our results.

7.1 Estimating the Distributions
Our analysis so far has focused on how well our model is

able to explain labeled data. As was discussed earlier, in
order use the model to generalize from labeled to unlabeled
date (e.g., to assign relevance ranking values to unlabeled
documents based on some relevance judgments) we must in-
corporate a prior so as to avoid over-fitting the labeled data.
To be able to rank a document we needed to specify both the
relevant and irrelevant probability distributions for a term,
so we need priors for both. We took different approaches to
the two distributions, which we discuss separately here.

7.1.1 Relevant Distributions
In estimating the specific relevant term distributions (de-

fined by φt) within our hyper-learned model, we assume we
have observed some labeled information. This can either be
a description of an information need (e.g., a keyword query),
which we treat as a single labeled relevant document, or ac-
tual labeled relevant documents.

One of the benefits of one-parameter exponentially fami-
lies is that they have a so-called conjugate prior distribution
that is extremely easy to work with. All information in the
labeled data can be summarized, to the extent that it affects
the choice of φt, with two sufficient statistics, τ1 and τ2 [1].
The statistic τ1 represents the number of observations, and
is the same for all terms. The statistic τ2 represents the sum
of all h(dt) values observed for a particular term. The prior
is specified by an initial setting of τ1 and τ2, and can be
thought of as reflecting the observation of a certain number
of “imaginary” documents. The prior is updated by adding
the true observations to the imaginary ones to get final val-
ues for τ1 and τ2.

Based on the sufficient statistics, the probability of φt is

proportional to

Pr(φt) ∝

[

k
∑

i=0

f(i)eφth(i)

]−τ1

eφtτ2 , (3)

This proportionality constant is difficult to compute for gen-
eral φ, but becomes irrelevant when we find the MAP esti-
mate (most likely value) for φt by taking the derivative of
Equation 3,

d Pr(φt)

dφt

= Pr(φt)

(

τ2 − τ1

(

∑k

i=0 f(i)h(i)eφth(i)

∑k

i=0 f(i)eφth(i)

))

,

and set it equal to zero. It is zero when E[h(dt)] is equal to
the h(dt) values we observe empirically, namely when

∑k

i=0 f(i)h(i)eφth(i)

∑k

i=0 f(i)eφth(i)
=

τ2

τ1
.

While there is also no obvious analytic solution for this prob-
lem, Pr(φ) is convex, so we can optimize it by bisection
search. In practice, for greater efficiency, we make a table
of left hand side values as a function of φt. Once we observe
our sufficient statistics, τ1 and τ2, we can use them to find
the correct φt via a table lookup.

7.1.2 Irrelevant Distributions
To find our ranking value, we also need the term distribu-

tions within the irrelevant documents. Since for any given
query, almost all documents are irrelevant, we chose not to
apply our exponential-family-with-a-prior framework, and
instead approximate the irrelevant document distribution of
each term by its empirical distribution within the corpus.
This whole-corpus problem is quite different. Unlike result
sets for unknown future queries, the entire corpus is avail-
able in advance. Thus, we need not be concerned about
over-fitting that will mismatch future unseen data.

Using the corpus distribution as the irrelevant distribution
could potentially be inaccurate. A given query term, for
example, might appear only in documents relevant to the
query. However, it does simplify our approach, allowing us
to set the irrelevant document distribution at preprocessing
time, without a query. Furthermore, it is unclear that our
exponential model, trained on the relatively coherent sets
of relevant documents, would accurately model the much
more diverse set of irrelevant documents, so there was no
real incentive to assume the extra complexity.

7.2 Retrieval Results
In this section we show how our hyper-learned model per-

formed on retrieval tasks. We first show that our model does
improve retrieval when we make a good estimate of the term
distributions. We then discuss how the model could be used
in a more typical environment, where the only information
provided about the relevant distributions is a short query,
and retrieval must be done in real time.

7.2.1 Using Labeled Documents
We first wanted to get a good idea of how our model

worked when we actually had a good estimate of the term
distributions, while being sure it generalized sufficiently. One
way to do this, similar to relevance feedback, is to assume
that there are a number of labeled relevant documents. These
labeled documents we used to estimate the specific term

distributions, and the distributions we used to find other
relevant documents. This is the framework that matches
most directly the standard machine learning model from
Section 3, as the occurrences pattern of a document fea-
ture in the labeled documents is used to MAP-estimate its
probability distribution in all relevant documents.

We evaluated a model hyper-learned (to find f and h) over
26 relevant document sets by testing it on the remaining 74
queries from TREC 1 and 2. To set our prior we imagined
we had observed 10 documents with the corpus distribution.
We then used 20 randomly selected relevant documents from
each of the 74 test relevant document sets to learn the spe-
cific term distributions (φt) for each query. Figure 3 shows
the performance on the remaining documents of the hyper-
learned model compared with the Poisson model. The new
model out-performs the Poisson model in all areas of the
precision-recall curve. The average precision for the hyper-
learned model (0.1643) is higher than that for the Poisson
model (0.1411).

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Recall

P
re

ci
si

on

New Model
Poisson

Figure 3: Results using the hyper-learned model,

compared with results using a Poisson model.

Twenty labeled documents were used to estimate

the specific term distributions.

7.2.2 Using a Query
A query is a more common way to specify an information

need. We treat a query as a single labeled relevant document
and apply the classification scheme of the previous section.
This gives us a RV of

∑

t∈d

[

log

(

n0
t

ndt

t

)

+ log

(

f(dt)

f(0)

)

+ (h(x) − h(0))h̄t

]

+

∑

t∈q

[

(h(dt) − h(0))
h(qt)

c + 1

]

,

where c represents the number of observations we’ve made
for our prior, and h̄t is our belief about term t assuming it
doesn’t appear in the query.

Our preliminary results using the titles of the TREC Top-
ics 50-150 were poor. We speculate that this failure is re-
lated to the length normalization issue discussed earlier. As
can be seen in the equation above, a document’s ranking
value has a component that is strongly affected by document
length. Since a short query provides information about so
few specific terms, this length effect dominates the presence
or absence of specific terms. We took a quick, though less
well founded, approach to correct for this by restricting our
algorithm to only use those terms present in the query. This

meant that for the document portion of the ranking value,
we only summed over query terms. The results, displayed
in Figure 4, show performance under this scheme is better
in all areas of the curve than the Poisson model, as well as
comparable to tf.idf [18], performing slightly worse in areas
of high precision, and better in areas of low precision.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

Recall

P
re

ci
si

on

Tf.idf
New Model
Poisson

Figure 4: The hyper-learned model on short queries,

compared with the Poisson model and tf.idf.

8. CONCLUSIONS AND FUTURE WORK
By working with the statistical properties of text, we

were able to learn a näıve Bayesian model that more closely
matched our corpus than multinomial or Poisson models.
We discussed how to learn such a model and how to use it
for retrieval. We found that in learning more likely term dis-
tribution families, we were not only able to better describe
our data, but we were also able to improve retrieval quality
in some cases.

Although we used the hyper-learned model for informa-
tion retrieval, an advantages of using a model is that it
can be generalized to other applications such as classifica-
tion and relevance feedback. For example, while we did not
study it in our experiments, the Bayesian machine learning
framework could be used for automatic relevance feedback,
using unlabeled documents that seem relevant to modify its
believed relevant-document distribution. Nigam et al. [20]
got good results with this approach using the multinomial
model, and we conjecture that our model, more accurate
than the multinomial, could further improve performance.

We also believe that by learning a better model from the
text, we could get even better performance gains. We cur-
rently use a simple gradient ascent method to hyper-learn
the best distribution family, but would like to find a more
global optima by incorporating smarter optimization tech-
niques. Also, because it is likely that length has a significant
impact on the quality of the model, it should be incorporated
into the model in a principled way. Learning analytic func-
tions for f and h could allow us to replace some of our table
lookup steps by closed forms and enable us to handle terms
that occur more than k times in a document.

It will also be interesting to investigate how general the
model we learned over the TREC corpus is. If the same
model could be learned from many different corpora, then
we can apply our improvements to different situations, and
even use the model to help us gain a better understaning
of language. On the other hand, if the model varies greatly
based on the text it describes, then learning the model be-
comes particularly important, making it possible to tailor

retrieval to specific languages, specific domains, and even
specific search preferences.

9. ACKNOWLEDGMENTS
The authors are grateful to Stephen Robertson and Tommi

Jaakola for their input on this work.

10. REFERENCES
[1] J. M. Bernardo and A. F. M. Smith. Bayesian Theory.

John Wiley & Sons, 1994.
[2] K. Church and W. Gale. Poisson mixtures. Natural

Language Engineering, 1(2):163–190, 1995.
[3] S. Eyheramendy, D. D. Lewis, and D. Madigan. On the

naive Bayes model for text classification. In Artificial
Intelligence & Statistics, 2003.

[4] L. Fitzpatrick and M. Dent. Automatic feedback using past
queries: Social searching? In SIGIR, 1997.

[5] N. Fuhr. Probabilistic models in information retrieval. The
Computer Journal, 35(3):243–255, 1992.

[6] A. T. Gous. Adaptive estimation of distributions using
exponential sub-families. Journal of Computational and
Graphical Statistics, 7(3):388–396, 1998.

[7] W. R. Greiff. A theory of term weighting based on
exploratory data analysis. In SIGIR, 1998.

[8] A. Griffith, H. C. Luckhurst, and P. Willett. Using
interdocument similarity information in document retrieval
systems. JASIS, 37:3–11, 1986.

[9] D. Heckerman. A tutorial on learning with Bayesian
networks. Technical Report MSR TR-95-06, Microsoft
Research, 1995. Revised 1996.

[10] R. Jin, A. G. Hauptmann, and C. Zhai. Title language
model for information retrieval. In SIGIR, 2002.

[11] K. S. Jones. A statistical interpretation of term specificity
and its application in retrieval. Journal of Documentation,
28:11–21, 1972.

[12] K. S. Jones, S. Walker, and S. Robertson. A probabilistic
model of information retrieval: development and status.
Technical Report TR-446, Cambridge University Computer
Laboratory, 1998.

[13] T. Kalt. A new probabilistic model of text classification
and retrieval. Technical Report IR-78, University of
Massachusetts Center for Intelligent Information Retrieval,
1996.

[14] S. Katz. Distribution of content words and phrases in text
and language modelling. Natural Language Engineering,
2(1):15–60, 1996.

[15] K. L. Kwok and M. Chan. Improving two-stage ad-hoc
retrieval for short queries. In SIGIR, 1998.

[16] D. D. Lewis. Naive (Bayes) at forty: The independence
assumption in information retrieval. In EMCL, 1998.

[17] H. P. Luhn. A statistical approach to mechanized encoding
and searching of literary information. IBM Journal of
Research and Developement, 1(4):309–317, 1957.

[18] K. McKeown, J. Klavans, V. Hatzivassiloglou, R. Barzilay,
and E. Eskin. Towards multidocument summarization by
reformulation: Progress and prospects. In AAAI, 1999.

[19] K. Ng. A maximum likelihood ratio information retrieval
model. In TREC-8, 1999.

[20] K. Nigam, A. K. McCallum, S. Thrun, and T. M. Mitchell.
Learning to classify text from labeled and unlabeled
documents. In AAAI, 1998.

[21] J. M. Ponte and W. B. Croft. A language modeling
approach to information retrieval. In SIGIR, 1998.

[22] S. Robertson and S. Walker. Some simple effective
approximations to the 2-Poisson model for probabilistic
weighted retrieval. In SIGIR, 1994.

[23] C. J. vanRijsbergen. Information Retrieval. Butterworths,
1979.

[24] C. Zhai and J. Lafferty. Two-stage language models for
information retrieval. In SIGIR, 2002.

