User Interface Continuations

Dennis Quan, David Huynh, David R. Karger, Robert Miller
MIT Computer Science and Atrtificial Intelligence Laboratory
200 Technology Square, Cambridge, MA 02139 USA
E-mail: {dquan,dfhuynh}@ai.mit.edu; {karger,rcm}@Ics.mit.edu

ABSTRACT

Dialog boxes that collect parameters for commarftsno
create ephemeral, unnatural interruptiarisa program’s
normal execution flow, encouraging the user to detegthe
dialog box as quickly as possible in order forphegram to
process that command. In this paper we examingézeof
turning the act of collecting parameters from ar ust a

first class object called a user interface contiioma Pro-
grams can create user interface continuations byifsjing

what information is to be collected from the used &up-
plying a callback (i.e., a continuation) to be fietl with the

collected information. A partially completed useterface

use them on more than one object at a time. Fanpbe if
an application exposes a font property inspectat diows
the user to inspect the formatting of whatever iextelected,
the user will have trouble trying to compare or ydpe
formatting of two different pieces of text at thense time.
Furthermore, going back to the previous examplaphbi
making the destination address lookup dialog borletess
is not the solution because the user may wish lersad-
dresses for more than one e-mail at once, and arigation
state attained by browsing for a destination addfesone
e-mail (e.g., looking through contact groups, dasegrches
from a corporate directory, etc.) would be lost wiige user

continuation can be saved as a new command, much agemporarily switches to addressing one of the otherails.

currying and partially evaluating a function withsat of

parameters produces a new function. Furthermorer us These problems arise from the fact that applicatidm not

interface continuations, like other continuatiorsgiag
paradigms, can be used to allow program executiaoi-
tinue uninterrupted while the user determines amamd’s
parameters at his or her leisure.

KEYWORDS: Continuations, dialog boxes

INTRODUCTION

Countless applications use dialog boxes to promptuser
for additional information needed to complete comdsa
Many dialog boxes are presented modally such treatser
cannot use other functionality in the applicatiamtiluthe
dialog box is dismissed. Haphazard use of mod&bgacan
inhibit the usability of a program. For examplegrsoe-mail
clients have a button that allows the user to lopka des-
tination address in the address book, presentedrasdal
dialog box. The user experiences trouble when drsqn’s
name being looked up is actually in the body ofaéhmail,
obscured by the dialog box. Modal dialog box versiof
base program functionality, such as address badds tend
to be less functional than their non-modal courges

Although not modal, modeless dialog boxes and ptgpe
inspectors can be similarly troublesome when uggrso

LEAVE BLANK THE LAST 2. 5cm
OF THE LEFT COLUWN
ON THE FI RST PAGE
FOR US TO PUT I N
THE COPYRI GHT NOTI CE!

treat the state of a command as a first class bHjdike

documents, which can be opened, saved, copiedmanad
nipulated, dialog boxes are usually singleton gpfteeneral.
In this paper we propose that the in-progress stéta

command be given first class status in a prograhis

accomplished by packaging the code that will becetexl

upon completion of the dialog box ascantinuationand

attaching it to the in-progress state. The dialog then

becomes a manifestation of the first class contianan the
screen. Together, the dialog box and the contianadire
referred to as aser interface continuation

The definition of continuation we adopt here arisem the
literature on continuation-passing style [7]. Camienal
programs use stack frames to keep track of whiobtfon is
currently being executed. A function completes wiien
releases its stack frame and returns to the callingtion
(the parent stack frame). In contrast, continuapassing
style does not use a stack; instead, functionsated with
an extra parameter known as a continuation. Asnmae
implies, a continuation is a function that repreésehe re-
maining flow of execution of a program. Insteadeifirning
a value, a function written in continuation passihge calls
the supplied continuation with the return value.@logy,
a dialog box under our scheme calls the supplietimaoa-
tion with the data gathered from the user.

Our approach brings about a number of advantages, F
user interface continuations gain many of the festwof
documents: the same sets of tools that can betasedk up
information for insertion into a document can beptayed

M Haystack
4 Back

» % A& Goto

Bl Send this item to someone

EEX

) Buddy List =

search for || NGNTNRNEGEGEEGE - -
People in department

“Show with collection elements ¥ Lay out as-an organization chart =

] Starting Points v

The following information is required:

Ttem to send 2| Weather for Cambridge, MA Add x
(02139)

find of [%] Summary information Add =
information
to send
Redpisnt Add =
4 2 Gregory
(a) I McConnley

(b)

CNET Mews.com

[cnn =

Cc-nferen-:e trip photos
q

[Google
Haystack Home Page
|E| Incorporate into Haystack <

|:>

2 Mary Smith
available
for chat

| 2 wmichael Kim | 2 udy Harrison| 2 Donald Cox |

Mangges Mangges

| 2 Denniz Quan | | 2 Spock |

2.4]
| >

{2 People in department a | B See previey

= User Dennis is logged into Haystack

Figure 1: Screenshot of user interface continuation: (a) the user interface continuation; (b) dragging an item from a

document into a user interface continuation

to satisfy continuations. There is also little urggto com-
plete a user interface continuation since the @ogdoes
not need to suspend its state while waiting for uker to
complete the command; the state needed to contime
program is encapsulated within the continuatiomaly,
user interface continuations can be saved by meérs
process called partial evaluation, which in effetates a
copy of an existing command in which some of the pa
rameters have already been filled in. These pbrtam-
pleted commands can then be organized and sealikked
other documents.

We demonstrate these techniques in the contexapétdck,
an environment designed to help users manage @il th
information, including e-mails, appointments, doemts,
and Web pages [1]. Haystack employs user interface
tinuations and other supporting abstractions to ulsgrs
begin commands and complete them at their conveaien
More information about Haystack, including a dovade
able version of the system, can be found at thepgrbome
page: http://haystack.lcs.mit.edu/.

OPERATION ABSTRACTION

Haystack abstracts most user interface commandsojot
erations—object-oriented pieces of functionality hwide-
fining metadata such as name, icon, and the typdkeo
parameters. This metadata is defined using Haystack
flexible data model, which is based on the Resolee
scription Framework (RDF) [3]. RDF is a generalizdie
rected graph representation that models metad&tanrs of
nodes (objects) and directed arcs (relationshigsvden
objects) and is used to model all of the metadate&erning

the user’'s documents and other objects [2]. We inawe-
eled operations in RDF, but any key-value pair ichetiza
scheme (e.g., s-expressions, XML, etc.) can be ayegl
Indeed, the use of declarative specifications dmnimands is
not new and has been investigated in the past; $geal.
applied the technique of treating commands as thjec
the purposes of supporting undo [5].

To illustrate the user interface continuation cqtsedis-
cussed in this paper, we will describe the impletiaigon of
a command that allows information about any objet¢he
system to be sent to some recipient. Pseudocodéhifor
operation’s metadata is given below:

MailAnObject
t ype Operation
titl e “Send this item to someone”
par ans Recipients,ltemToSend,WhatPartsToSend

Recipients
t ype Parameter
titl e “Recipients”
par anmet er Type Person

ltemToSend
t ype Parameter
title “Itemto send”
par anet er Type Anything

WhatPartsToSend
t ype Parameter
titl e “Kind of information to send”
par anet er Type InformationExtractor

To model the current state of an operation in Heglstwe
use anoperation closurewhich is an object that has, as
properties, the parameters for an operation in nessy

Closures are also modeled in RDF. An example céofur
our send object command is as follows:

closure20
t ype Closure
oper at i on MailAnObject
Reci pi ent s DonaldCox,MarySmith
| t emToSend DepartmentMeeting
What Par t sToSend SummaryExtractor

USER INTERFACE CONTINUATIONS

When an operation that requires parameters isaetivby
means of a menu, a toolbar, or context menu, Helysta
checks to see if the selection unambiguously $adisiny of
the operation’s parameter types. If there are wived
parameters or the selection type checks againstipeul
parameters, Haystack exposes the in-progress aperat
closure as a user interface continuation. Likea¢odibox, a
user interface continuation prompts the user foedee
information—in this case, the unresolved parameters.

Unlike modal dialog boxes, user interface contiioret are
modeless, allowing the user to use whatever taolthé
system he or she is most familiar with to find itifermation
needed to complete the operation. Our interfasénfar to
a shopping cart on an e-business website: thecasedrag
and drop relevant items into the “bins” represemtthe
operation’s parameters, as shown in Figure 1. Hee can
even decide to perform other tasks and come backeto
operation later. When the user has finished obtgirihe
necessary information and is ready to perform theation,
he or she clicks the “OK” button on the user irdegf con-
tinuation. The system then invokes the continuatnich
in the case of an operation invocation, is a fuumctihat
performs the operation using the parameter bindapgsi-
fied in the operation closure.

(R Tr—— |

peration Closure: Send thisitem to »| pperation Closure: Send this

Support for user interface continuations is notehe@nt
upon the software environment making use of detilera
specifications of commands. The essence of a osaface
continuation, as mentioned earlier, is a user fiater for
accepting values from the user (e.g., a dialog tamg a
function to call when the user has finished supyyihe
needed information. However, user interface coatiiotn
support is especially well suited for use with dea}
tively-specified operations. With an operation adtion,
the act of presenting a dialog box is reduced &ojtip of
displaying an editor for the operation closure. Phesenta-
tion of a user interface continuation is automadicpro-
duced from an operation’s declarative specificatioith
widgets specialized for the kind of input requird@he
problem of laying out dialog box widgets has beerhier
explored in previous work [8].) In this way, Haystdrees
the developer from needing to design specializédiature
user interfaces for retrieving information from it modal
dialog boxes, reusing the existing browsing envinrent and
at the same time providing the user with a seandgperi-
ence. The operation’s implementation, a functieralieady
written in a form that makes it suitable to be edlfrom a
continuation. Furthermore, the presentation of uker in-
terface continuation can be customized by implemgra
custom view (cf. Model-View-Controller) for the dimua-
tion [4].

CURRYING

Finally, users are able to save an in-progressatiper clo-
sure and turn it into a new operation by selectirggoption
from the user interface continuation’s context mehat
instructs the system to bind the state of the otwperation
together with the already specified parameterss Bhiding
process can be described as currying followed htigba
evaluation, but we will refer to the entire procassurrying

as a shorthand. Currying is a term used in
programming languages such as Haskell and

! The following information is required: | Someane S merr s ML that refers to the conversion of a function
1 \iew container | .
Item to send e (7 Add to Favaorites = — o n
) PP) Add to collectionflist Send this item to someone
Kind of [2] Summary informaf List: Start pane 4
information tﬁ fa Annotate The following information is required:
B Attach Ttem to send dd
ini reqory M " A B to sen Add =
Recipient & Gregory McConnley Add = Begin doing this task El A
- Kind of |2 Summary information Add =
g W] Browsz to information to
= ' Copy URI send
Export to file Recipient & Gregory McConnley Add =
Finish doing this task
(%] Recommend
Remind me to prepare for this =
Remind me to read this = e > v
Rename
Save as an operation The following information is required:
Send quick message Mame Eend something to Greg| |=
e e Task to save B Send this item to someone =
View annotations
Use in pending tasks... »
Show summary. .. » =

Figure 2: Currying an operation from the context menu

Figure 3: Creating a curried operation

that takesn parameters into a “curried” function that takes copy to the color printer, etc.). By storing thesgtings in

the first original parameter and returns a functibat ac-
cepts the remainingn - 1 parameters (also in a curried
fashion). In other words, currying takes a functioof the
form:

fraxax...xa,-Db
and turns it into a function of the form:

curry[ffl:as & > ... s &> b

Similarly, when a user creates a new operationutiino
currying, he or she is creating a new function fith cur-
ried form of the original function in which the pameters
that have already been specified have been apigde
curried function. Another way to put this is if aen wishes
to curry an operatiof with the parameters; dhrough g
already specified, then the resulting curried of@neg has
the following form:

g=uncurry[curry[flay @ ... & : @n X a1 X ... X & - b
There is nothing special about the way in whichrying in
implemented in Haystack. Instead, currying is exgds the
user as simply another operation that takes animxisp-
eration closure and a name as parameters. Figlustates
the use of a context menu for saving an operafimsuce as
a new operation. Additionally, the screenshot givan
Figure 3 depicts a user filling in a user interfaoatinuation
to create a new operation from an existing usesriate
continuation.

One benefit of currying is its ability to allow usdo create
specialized commands suited for their own purpdsethe
example depicted in Figure 2, the user has likdéseoved

that he or she sends summaries to Gregory McConnle

frequently enough to warrant its own command. Most
isting environments support this level of custordiZenc-
tionality only through macros or most recently ugktiRU)
lists. Furthermore, because curried operationsueed in-
terface continuations are described in the dataemaley
can be organized, searched, and shared with ojfistrais
documents can (e.g., placed in folders, sent agibat:
tachments, etc.).

Finally, currying can be used to construct firstssl support
for command customizations. For example, the Riiglibg

box in Windows remembers settings such as copytcoun ¢

which printer to use, and collation options only fioe life-
time of an application. This simple approach obssuwo
important user interface problems. First, unlegsuser has
observed the Print dialog box’s behavior over alpariod
of time, the circumstances under which a prograaing the
last used print options may be unclear to the asdirst.
Second, there is no support for remembering mae tne
of the user's frequently-used configurations (edpu-
ble-sided duplicate copies with staples, one-sidedle

curried operations, applications can give userst fitass
support for commonly-used groups of settings wihde
moving the ambiguity surrounding an applicationtdiqy
on maintaining default options. (Developers woudtvdn to
expose settings such as double-sidedness as parartet
the print operation rather than as properties efghinter.
Also, any curried form of an operation used widehough
would likely gain built-in support from the appligan, e.g.,
“Print on Standard Paper”; our approach enablessuse
create such customizations without developer ratdin.)
Although we have not implemented support for autiena
generation of MRU lists, previous work has explothd
notion of exposing such MRUs in the user interfjeln
Haystack, users are free to place their curriedatjpms into
the system’s menus and toolbars.

CONCLUSION

User interface continuations enable first classpsupfor
saving the state of a command and presentingatritode-
less fashion. Users benefit from using the tooteaaly
present within an application for locating the valet pa-
rameters to the command instead of being restrictetie
more limited functionality provided in special-poge
modal dialog boxes. Like documents, continuaticss e
completed at the user’s leisure, saved as curpedations,
and sent to colleagues. Finally, curried operatgoside an

elegant means for implementing customized commands

without macros.

ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboratio
the MIT Oxygen project, and IBM.

)REFERENCES

1. Huynh, D., Karger, D., and Quan, D. Haystack: Atfelm for Cre-
ating, Organizing and Visualizing Information UsiRDF. In Pro-
ceedings of the Semantic Web Workshop, The EleVéaitl Wide
Web Conference 2002

2. Quan, D., Huynh, D., and Karger, D. Haystack: Atfieta for Au-
thoring End User Semantic Web Applications. To appe thePro-
ceedings of the International Semantic Web Conter&003

3. Resource Description Framework (RDF) Model and &yr@pecifi-
cation. http://www.w3.0rg/TR/1999/ REC-rdf-synta900222/.

Quan, D., Karger, D., and Huynh, D. RDF AuthoringviEonments
for End Usersin Proceedings of Semantic Web Foundations and
Application Technologies 2003

Myers, B., and Kosbie, D. Reusable Hierarchical @mmd Objects.
In Proceedings of CHI ‘96

6. Terry, M. and Mynatt, E. Side Views: Persistent-Dgmand Pre-
views for Open-Ended Tasks. Broceedings of UIST '02

7. Steele, G. and Sussman,l@MBDA: The Ultimate ImperativéIT
Artificial Intelligence Laboratory Memo 353.

8. Vander Zanden, B. and Myers, B. Automatic, Look-&eel Inde-
pendent Dialog Creation for Graphical User Intezfacin Proceed-
ings of CHI '90

