
A Unified Abstraction for Messaging on the Semantic Web
Dennis Quan

IBM Internet Technology
1 Rogers Street

Cambridge, MA 02142 USA

dennisq@us.ibm.com

Karun Bakshi
MIT Artificial Intelligence Laboratory

200 Technology Square
Cambridge, MA 02139 USA

karunb@ai.mit.edu

David Karger
MIT Laboratory for Computer Science

200 Technology Square
Cambridge, MA 02139 USA

karger@theory.lcs.mit.edu

ABSTRACT
Since its inception, the Internet has been a hotbed of several suc-
cessful communications channels, starting off with e-mail, Inter-
net Relay Chat and Usenet newsgroups and more recently adding
Web annotation, instant messaging, and news feeds. However,
these channels were developed fairly independently, and in many
cases their respective functionalities have grown to overlap sig-
nificantly. For instance, users of these systems have separate iden-
tifiers for e-mail, chat, and instant messaging, and clients for these
systems all have their own implementations of threaded message
views. We believe these problems stem from a lack of a common
user interface and data model. In this paper we use basic concepts
from the Semantic Web and RDF to unify and model these seem-
ingly disparate messaging paradigms. We also demonstrate a gen-
eralized user interface for messaging that uses the data model we
have developed. From this process we realize a number of syner-
gies that result from the reduction of overlap and the finer-grained
control users are given over message composition, transmission,
storage and retrieval.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – collaborative computing, computer-
supported cooperative work.

General Terms
Management, Human Factors

Keywords
RDF, Semantic Web, e-mail, instant messaging, IRC, newsgroups,
annotation, web logs, blogs, news feeds, user interface, messag-
ing, collaboration

1. MOTIVATION
One of the greatest accomplishments of the Internet has been ena-
bling communication in various forms. Perhaps the most notable
technology in this space is e-mail, but instant messaging (IM),
Internet Relay Chat (IRC), and Usenet newsgroups have also
found widespread use for related applications. The success of
these communications protocols can be attributed not only to the
degree to which they address shortcomings of their non-digital
counterparts but also to their ubiquity and prominence as stan-
dards.

These systems have been developed somewhat independently over
the past half century and continue to be extended with new
functionality that addresses the broadening needs of their users.

tionality that addresses the broadening needs of their users. While
the systems share some common notions, such as e-mail addresses
and MIME headers, the amount of perhaps unnecessarily dupli-
cated infrastructure is becoming increasingly evident. For exam-
ple, all of these protocols have different authentication and identi-
fication systems. The most obvious indicator of this phenomenon
is the overlap in functionality in the clients for these systems. E-
mail clients, instant messengers, and IRC clients all have widgets
for displaying lists of people and means for notifying senders of a
recipient’s absence. Newsgroup readers and e-mail clients both
have threaded message views and different mechanisms for filter-
ing out messages from specific people.

This line of reasoning may seem like an impetus for a shared
component architecture, but it extends further as the uses for the
different communications channels have started to overlap. For
example, the same tasks can be and are accomplished via e-mail
and IM, e.g. sending quick messages for short term coordination,
reminding others of pending tasks, and asking questions. Fur-
thermore, multiple modalities may be involved in the completion
of a single task: to notify a friend that you are going to be out for
the day, you may start off by attempting to send an instant mes-
sage, but if he or she is not online, you will likely switch to an e-
mail client. If a user has a technical problem with a program, he or
she may have to send a helpdesk request through several different
channels separately.

Such a trend is to be expected as these systems are all addressing
different aspects of the same fundamental problems of interper-
sonal and group communication. While in the beginning, the dif-
ferent communication channels crystallized functionalities spe-
cific to key activities, users have grown more reliant on these
systems and are now bumping against the limitations of the ab-
stractions. As a result, the opportunity exists to take a “bigger
picture” look at the situation and to recast the problem in terms of
a broader messaging abstraction. Once the existing systems are
unified under a common model, we can also enhance all forms of
messaging by incorporating features that are currently present
only for specific messaging paradigms.

2. EXISTING MESSAGING SYSTEMS
A significant amount of research has been done regarding the
major Internet messaging systems. Previous work has cumula-
tively uncovered the core strengths and limitations of each system.
We use these findings to take a big picture view of the problem at
hand and realize that despite their ostensible differences, all com-
munication systems can be placed in context and compared by
considering a handful of useful partitioning criteria, as dia-
grammed in Table 1. Considering each criterion in turn, we show
how communication media that are similar in some respect tend to
have similar properties, preferred uses and problems. Next, we
present examples of some communication media that have various
combinations of these aspects and have gained widespread accep-

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

tance in order to understand what particular niche they serve. We
then use these findings as a starting point for our integration work.

Table 1: Existing messaging systems

2.1 Synchronicity and persistence
Synchronicity captures the essence of conversation timing and
serves as a fundamental divider of different communication
modes. In asynchronous communication, the sender does not wait
for a response and conversations are generally carried out over
longer periods of time, with each party having the luxury of for-
mulating a well thought out response. On the other hand, users
exchange information relatively rapidly in synchronous communi-
cation, where a reply can generally be expected within a reason-
able time period to facilitate an active dialog.

Inherent in the idea of asynchronicity is the notion of automatic
persistence, which is at once both its boon and its bane. Asyn-
chronous messages such as e-mails tend to be longer and auto-
matically persisted. Whereas long term persistence supports cap-
turing knowledge for future reference, it also allows extraneous
information to add “noise” to the information environment, mak-
ing it difficult to obtain and attend to important information [11].
On the other hand, short and to the point messages comprise syn-
chronous communication, with persistence being an explicitly
specified option due to the way these systems have evolved. Fi-
nally, synchronous communication, being closer to face-to-face
communication, tends to be more informal and places greater
importance on social interaction cues, e.g. response times, aware-
ness of presence, etc. [9].

The real-time nature of synchronous communication media poses
a number of problems. Voida and Smith both present evidence for
IM and group chat indicating that managing context in a single
conversation is challenging, requiring close attention by its par-
ticipants to the progress of multiple threads in the conversation,
and would benefit much from design enhancements [9] [6]. Fur-
thermore, it seems that design enhancements needed to improve
identification of thought boundaries in order to identify a turn,
and interjection in order to claim a turn are equally applicable to
IM and chat systems [9]. Furthermore, in synchronous systems,
there is no way to ensure that a response appears in the right con-
text since the display is a temporal sequence rather than a topical
hierarchy [6]. Also, as the number of speakers goes up, they be-
come difficult to distinguish. Finally, synchronous communica-
tion lacks immediate feedback on the listening status of the par-
ticipants. Smith et al. point at threaded chat systems that may
resolve some of these problems in certain situations such as deci-
sion making by allowing the conversation to remain focused, sim-
plifying turn-taking and allowing easy access to recent comments.
Nevertheless, such systems fail when the participant may be inter-
ested in multiple threads, each one competing for attention in a
different portion of the UI.

2.2 Public versus private
Communication paradigms may also be grouped based on whether
they support public access and dissemination of information
where the recipients are unknown a priori, or whether they are
intended for private, communication where the participants are
known and can be selected. As usual, the notion of public may be
restricted by other means, e.g. all employees of a particular com-
pany.

2.3 Current messaging systems
In this section, we discuss several communication mechanisms
that currently exist, their particular properties, usage niche and
existing problems. Specifically, we consider email, instant mes-
saging, news groups, IRC style chat, shared annotation and news
feeds.

2.3.1 E-mail
E-mail, serving as a generalized asynchronous communication
mechanism for social interaction and work-related collaboration,
is perhaps the most widely used mode of digital communication.
Whittaker et al. report that e-mail has evolved from an asynchro-
nous communication mode to a focal point for task management
and information organization simply because it serves as a
mechanism for assigning and tracking work, as well as a recepta-
cle of various kinds of information [5]. This is primarily due to
the e-mail inbox being capable of maintaining context for related
messages, simplifying information availability by collocating it
and serving as a constant reminder of items needing attention.
Furthermore, it makes available a single convenient, accessible,
long-term archiving mechanism allowing easy filing for items in
the inbox, or letting the inbox itself be the archive.

2.3.2 Instant messaging
Nardi et al. describe instant messaging as a synchronous commu-
nication mode between two people that facilitates almost instanta-
neous exchange of short messages resulting in a casual conversa-
tion atmosphere [7]. Although the individual messages themselves
may be short, immediate and rarely persisted, instant messaging
allows maintenance of longer term sessions that allow awareness
of presence of other parties, thereby facilitating longer term con-
text maintenance and allowing continuation of the conversation.
Unlike e-mail, users do not consider an IM session as a heavy-
weight activity requiring a formal addressing process, greeting
and common ground determination prior to information exchange.
This view is supported in how it is used: short queries for infor-
mational or coordination purposes and social interaction with
others—all tasks that do not require long or complicated mes-
sages.

Despite its widespread use, IM introduces problems unique to its
domain. For example, a request to converse may come at an inop-
portune moment and be considered disruptive due to its interrup-
tive notification system. Also, robust designs should support
mechanisms for finer-grained control over availability indicators
without forcing users to resort to manual management of avail-
ability status of multiple online identities for the same person [9].

2.3.3 Newsgroups
Newsgroups comprise perhaps the largest online communities that
have resulted from the proliferation of the Internet [8].
Whittaker’s findings on group discussion seem equally applicable
to newsgroups in general [11]. Although similar to e-mail in be-
ing a persistent means of asynchronous messaging, newsgroups
differ in one very fundamental way. Unlike e-mail and IM which

 Synchronous
(generally not
persistent)

Asynchronous (generally
persistent)

Private Instant Messaging Mail

Public IRC News, Annotation, News
feeds

are “by invitation only” paradigms, newsgroups allow public ac-
cess to and participation in ongoing conversations. An interesting
aspect of this mode of communication is that the general interest
of the participants is well known or easily inferable, and hence
establishment of common ground for a dialogue is fairly easy.
Remarkably, only a minority of newsgroup users contribute a
large portion of the discussion while the majority of users are
content to be passive observers. According to Whittaker, group
discussions function both as active dialogue for exchange of in-
formation as well as repositories of immediate and reapplicable
knowledge embedded in archives of past discussions that can be
searched by newcomers [11] Discussions on newsgroups provide
a means for their members not only for interactive ques-
tion/answer and debate, but also as a means of broadcasting refer-
ence information of general interest.

Unfortunately, newsgroups are subject to significant levels of
irrelevant postings such that confusion resulting from the “noise”
seems to lead to multiple discussions on the same topic. Whittaker
argues that newsgroups should support easy change of communi-
cation mode (e.g. instant messaging when answers to urgent que-
ries are needed). As it is, newsgroup users resort to e-mail as a
means of privately continuing a conversation that started as a
public post.

2.3.4 IRC and group chat
Group chat systems, like other communication technologies, have
come to support both social interaction as well as work collabora-
tion such as discussion and decision making and group memory
[11]. Much like newsgroups, chat systems tend to be publicly
accessible, but the conversations tend to be ephemeral; the con-
versation is not stored in an archive. The lack of persistence is
generally a by-product of the near synchronous nature of the
communication mode. The conversations proceed so fast that
responses to one statement in a given topic are interleaved with
new topics or completely different threads, yielding an unintelli-
gible sequence of messages whose utility as a future knowledge
repository is limited.

2.3.5 Shared annotations
Although annotation is not normally considered a form of com-
munication, when it is used in a shared context such as peer revi-
sion, annotations gain many of the characteristics of newsgroup
postings. One can observe that the primary distinguishing charac-
teristic of an annotation is the specification of which document
serves as the annotation’s topic. Furthermore, collaborative anno-
tation systems permit replies to be posted to annotations, giving
these systems a notion of threading similar to those found in e-
mail and in newsgroups. Indeed, web-based annotation products
such as Microsoft Office 2000 allow users to post documents
online on websites and enable users to participate in threaded
online discussions [12]. Also of interest are recently developed
annotation systems that permit both metadata and textual mes-
sages to be specified [13] [14].

2.3.6 News feeds and web logs
Another interesting arena for messaging exists in the distribution
channels provided by online news feeds and web logs (also
known as “blogs”). Unlike other forms of messaging, news feeds
and web logs are usually unidirectional, streaming messages (i.e.,
news articles) to a large audience. However, as is the case in the
physical world, news-style distribution does not preclude bidirec-
tional dialog from occurring. The analog of “Letters to the Editor”
is sometimes provided in news feeds if a return e-mail address is

included. As perhaps one of the more nascent forms of communi-
cation discussed here, news feed clients are perhaps the most lack-
ing in the basic functionality possessed by client software for the
other protocols.

3. APPROACH
In developing a unified framework for messaging, our approach
rests on preserving the existing communication capabilities sup-
ported by the Internet, simultaneously attempting to address many
of the problems they engender in their respective domains, and
capitalizing on the synergy that results from treating different
communication modalities as a single messaging system. In im-
plementing these goals, we develop a robust infrastructure resting
on a well defined ontology for messaging using the Resource
Description Framework (RDF), a Semantic Web technology for
integrating disparate systems and data together [4]. The robust
infrastructure in turn facilitates addressing many of the UI prob-
lems and overlaps that exist. RDF is a portable format for describ-
ing semantic networks or labeled directed graphs [3]. Further-
more, RDF is a flexible, “semistructured” data model in which
one can model a variety of concepts, from annotations to news
feeds.

To realize the RDF data model, we are building support for uni-
fied messaging into Haystack, an information management project
at the Laboratory for Computer Science at MIT [1]. The goal of
the Haystack project is to develop a tool that allows users to easily
manage their documents, e-mail messages, appointments, tasks,
and other information. Haystack uses RDF to describe the connec-
tions between different documents in a user’s corpus as well as
the metadata concerning each document. Haystack’s user interface
exposes general tools for navigating the various kinds of informa-
tion found in the user’s corpus. A screenshot of Haystack is
shown in Figure 1.

In order to apply RDF to the problem at hand, we give ontological
specifications of how to represent messages, conversations, and
people using RDF Schema. These representations generalize the
notions of sender, recipient and reply threads and form the basis
of our messaging data model. This model allows us to aggregate
arbitrary types of messages thereby supporting the types of me-
dium interchanges people often make (e.g. switching from a pub-
lic post to a private e-mail discussion) while at the same time
capturing the entire conversation to maintain message context that
is so crucial in activities such as task management [5] [7]. Fur-
thermore, by casting messages and conversations into RDF, we
also gain a persistent description to which we can add additional
metadata that will improve searches and other information re-
trieval techniques. Hence, users will be better able to reduce
“noise” and manage information overload by being willing to file
information and not worrying about not being able to find it later.
Finally, a unified messaging paradigm implies that all information
is collocated and hence conveniently accessible, which is crucial
from a usability perspective [5].

As we hinted at above, a number of the issues with messaging
systems today are user interface problems. Our prototype user
interface built on Haystack attempts to generalize and unify many
of the underlying themes present separately in each of the existing
systems. For example, one major difference lies in the levels of
convenience: quickly participating in a discussion is much easier
in instant messengers and IRC clients than in e-mail and news
readers. Also, another problem with messaging today is that user
interfaces are not equipped to handle the huge volumes of mes-
sages that are often encountered today, as mentioned earlier. By

creating higher-level organizational concepts such as conversa-
tions, we are able to consolidate messages with similar topics
together, reducing the clutter in users’ inboxes, while giving users
more intuitive ways to navigate through their message corpora.

4. UNIFYING THE DATA MODEL
In this section we discuss the various elements of our messaging
ontology. Figure 2 depicts the different elements of this ontology
and how they interrelate by means of an example.

4.1 Messaging drivers
Our ontology is designed specifically to work with existing mes-
saging systems. As a result, the base of our messaging infrastruc-
ture consists of a series of mail drivers capable of sending and
receiving messages over protocols such as POP3, SMTP, and
Jabber. When a message is to be sent, the system must be able to
determine which of the available messaging drivers is best suited
to delivering the message given the circumstances. In our system,
messaging drivers are described as having type
msg:MessageSendService.

Messaging drivers are responsible for emulating functionality that
is not normally available in the underlying protocol. For example,

e-mail uses MIME headers to describe metadata concerning the
messages, whereas IRC messages typically have no metadata.
Techniques such as encoding messages in SOAP envelopes can be
employed in these cases [16].

Messaging drivers are also responsible for incorporating messages
into Haystack’s RDF repository, which makes messages accessi-
ble via the user interface. This results in all messages being persis-
tent.

4.2 Identity and addressing
As noted earlier, each messaging protocol currently maintains its
own address scheme. For example, SMTP servers are pro-
grammed to route e-mail messages according to recipients’ e-mail
addresses. These addresses are represented directly in our ontol-
ogy as URIs. In the case of e-mail, a well-defined scheme for
forming a URI from an e-mail address is available, which simply
directs the system to prepend the mailto: protocol scheme to
the e-mail address. There have been similar schemes devised for
the other protocols.

When a message is specifically directed to be routed by means of
a particular address, the system needs to be able to resolve the
address to a driver capable of interpreting it. We specify a base

Figure 1: Screenshot of Haystack

class called msg:Address that represents addresses handled by
mail drivers. This allows the system to recognize resources as
being addresses without relying on the syntactic form of a re-
source’s URI (e.g., whether the URI starts with “mailto:”). We
can then derive classes such as msg:EmailAddress and stipu-
late that e-mail address resources be asserted to have this type.

Whereas most current messaging systems have a single identifier
which is used for both identification and addressing, our unified
messaging ontology necessarily distinguishes between the two
concepts since the same person may have a different address for
message delivery depending on the message type. However, it is
not necessary for those sending messages to concern themselves
with the specific address by which a message will be sent. Instead,
people can be represented directly by means of the hs:Person
class. Recipients and senders are specified by instances of the
msg:AddressSpecification class. Address specifications
can specify either a specific address or a person resource, or both.
Addresses can be associated with people with the
msg:hasAddress predicate.

Furthermore, some protocols support the notion of presence, al-
lowing users to tell when their contacts are online and available
for communication. We model this notion by associating
msg:Endpoint’s with the msg:onlineStatus property.
Drivers for protocols that support presence are responsible for
keeping these properties up to date.

4.3 Messages
In order to incorporate the various forms of messaging available,
we define the class msg:Message in a very general manner. In

our system a message is a unit of expressive communication
transported from one or more senders to one or more recipients.
This definition allows us to unify the concepts of instant mes-
sages, e-mails, newsgroup postings, annotations, chat, and even
articles delivered via news feeds.

However, care is needed to distinguish messaging from the gen-
eral recording of information. We argue it is possible but not use-
ful to define messaging to include all forms of information pass-
ing from one component to another. For example, does saving a
document to disk constitute the sending of a “message”? Most
users are unaware of the inner workings of a computer, and the
transmission of a document from memory to disk occurs within
the same “black box” as far as the user is concerned. Like all
models, our ontology implicitly places a practical boundary
around the types of objects we wish to describe. To achieve this,
we wish to restrict our modeling of messages to include only
communication where it is useful to acknowledge the transmission
process from the sender’s perspective. Messaging in the sense
presented in this paper must therefore involve communication
between either human parties or autonomous agents that are work-
ing as substitutes for human parties, such as forum moderators.

In addition, it is helpful to distinguish the idea of “audience” from
“recipient”. When a user posts a webpage to an Internet HTTP
server, he or she is declaring the audience of that webpage to be
the general public. However, the user is not “sending” this page to
anyone; in other words, in the beginning the page has no “recipi-
ent”. Contrast this situation with that of information being leaked
to the press: a reporter may be the recipient of information, al-
though the intended audience of that information certainly does

Figure 2: Messages modeled according to our ontology (rdf:type’s are indicated in parentheses; msg: prefix indicates
http://haystack.lcs.mit.edu/schemata/mail# ontology; hs: prefix indicates http://haystack.lcs.mit.edu/schemata/haystack# ontology;
and note: prefix indicates http://haystack.lcs.mit.edu/schemata/note# ontology for text documents)

TPS Report Discussion

(msg:Discussion)

Message 2

(msg:Message)

hs:member

msg:body

Message Body

(note:Note)

mail:synchronous

“true”

note:body
“So what’s left to
complete the TPS
Report?

John”

Message 1

hs:member

msg:inReplyTo

(msg:Address-
Specification)

msg:from

John Doe

(hs:Person)

msg:resource
msg:address

mailto:john@
some.org

not include him or her. For our concept of messaging, we care
only about message recipients, emphasizing the notion that mes-
saging concerns only the aspect of transmission, not intended
audience.

Messages come in various forms. The bulk of all messages are
textual, but in the context of the Semantic Web it is also useful to
provide for messages that conform to some established schema,
such as meeting requests, money orders, or even bank statements.
However, it is important to note that objects such as text docu-
ments, financial statements and currency can exist outside of mes-
saging environments. The notion of message is independent and
to some extent orthogonal to the notions of text documents and
financial statements. Therefore, we define a message as an object
for which a sender and a set of recipients are specified. A message
also contains a body, which can be of any type known by the sys-
tem.

4.4 Threads and conversations
Built up from messages are higher level aggregations that model
patterns of communication. We highlight two specific forms that
pervade electronic communication, threads and conversations,
while noting that these
two forms can exist inde-
pendently of each other
and that other forms can
be defined.

A thread is a connected
subset of a collection of
messages. Threads typi-
cally indicate a stream of
messages exchanged
between different parties
on a very specific topic.
Keeping track of threads
is important because
responses can sometimes
be interpreted only in the
context of other messages
in the thread. Our con-
cept of threading is indi-
cated by the presence of
the msg:thread prop-
erty, linking a message to
a msg:Thread object.

Threading is not directly
supported by most e-mail
protocols, but one
method for constructing
msg:Thread objects is
to reconstruct threads
based on
msg:inReplyTo con-
nections corresponding to
the “in reply to” relation-
ships present in e-mail
and newsgroups. How-
ever, users often misuse
the “Reply” feature of e-
mail (e.g., sending a mes-
sage to someone by locat-
ing the last message re-

ceived from the person and clicking Reply) or fail to use it at all.
Still, we feel that using msg:inReplyTo is a useful indicator of
a thread, despite occasional human error. Perhaps providing a user
interface that makes more prominent use of reply chains and gives
users more control over how messages are sent will help to fix this
problem.

Also important is the concept of a conversation. Like threads,
conversations consist of a collection of messages, but the connec-
tion between messages in a conversation tends to be more loosely
defined by a more generalized topic than those in a thread. Con-
versations in our ontology have type msg:Discussion and
correspond to newsgroups, instant messaging conversations, and
IRC chats.

In addition to being a collection of messages, conversations also
maintain state in order to help facilitate changes in the interaction.
A conversation resource keeps a record of the current participants
in the conversation, as this list may change during the course of
the conversation. Furthermore, whether the conversation is cur-
rently considered public or private or being held synchronously or
asynchronously is recorded.

Figure 3: Example conversation

Depending on the protocol, conversations can sometimes serve as
endpoints of messages. For example, messages in IRC chats and
newsgroup postings are often not directed at any individual in
particular but instead to the group, represented by the conversa-
tion object.

4.5 Annotations
In our model, annotations are simply messages with a well-
defined topic resource. Like messages, the concept of being an
annotation is completely detached from an object having other
types, so any object can be made to be the body of an annotation.
All of the previously described characteristics of messages apply
equally to annotations; in particular, annotations can be replied to.
Annotations have type ann:Annotation and the object being
annotated connects to an annotation with the ann:annotation
predicate.

The ontology presented here mainly addresses the notion of an
annotation in a collaborative context. In such cases annotations
are most often persisted into an annotation store. Annotation
stores are similar to newsgroup servers in that they both contain
groups of threaded messages loosely related by common topic
spaces, and as such, annotation stores can be modeled as mail
drivers in our model. However, our implementation of shared
annotations makes no assumptions about the underlying store; a
conversation held over an IRC channel makes for an equally suit-
able medium for holding annotations.

5. USER INTERFACE
Our unified messaging ontology gives us a
means for integrating currently available
modes of communication in an extensible
fashion. However, for the user to realize the
benefits of this ontology, the user interface
must be carefully constructed as to capture
the expressiveness of the underlying data
model while preserving the benefits of the
specific channels highlighted in Section 2.

5.1 Example scenario
To illustrate the architecture of our user inter-
face paradigm, we will refer to the example
conversation given in Figure 3. The scenario
we pose features a dialog between John and
Mary attempting to coordinate the completion
of a report.

The following is a list of steps taken by Mary
in this conversation:

1. Mary checks her calendar and notices
that a key report is almost due. She se-
lects “Send message” from the “Com-
municate/work with others” menu on the
start pane. In the message editor she
types up a message to John telling him
to finish the report.

2. She receives a reply a few minutes later,
where John has asked her about what is
left to be done. She realizes that this
conversation might require several turns.
Mary decides to start tracking this con-
versation by selecting “View Discus-
sion” from the context menu of John’s

reply.

3. In the conversation view she notices that John is online and
changes the conversation mode to instant. She then has a
short dialog with John explaining what needs to be finished.

4. That evening she checks her e-mail and notices a message
from John telling her that an important chart is missing. She
starts to type up a quick response when she notices that she
needs to CC her secretary and attach a file. Mary clicks
“Compose message full screen” in order to take advantage of
the full screen message editor, which includes the advanced
functionality she needs for this particular message.

5. In the morning she checks the conversation again and finds
the meeting invitation sent by her secretary. Unfortunately,
she is running late and sends John a quick message updating
him of her status.

5.2 Conversation interfaces
It is useful to note that the example conversation interleaves both
synchronous (instant messages) and asynchronous (e-mail) com-
munication. Users can select the synchronicity when composing
new messages by means of the Conversation Mode widgets. Also
of note is the way messages of different types—here, textual and
machine-processable structured messages (e.g., meeting requests,
invitations, etc.)—can be combined within the same conversation.

The view of the conversation shown in Figure 3 arranges mes-

Figure 4: Conversation displayed as a graph

sages as a linear, temporal sequence. However, it is not difficult to
imagine viewing the same conversation in a variety of other pres-
entation styles, e.g., threaded messages, reply graphs, etc. In gen-
eral, Haystack allows users to visualize data in different views
depending on the context. For example, the same conversation can
be visualized as a graph, as is shown in Figure 4.

Similarly, users can compose messages using a view that best
suits their purposes. While participating in a chat, composition
can be performed in-place. Messages composed in this context are
sent in the context of the conversation; in other words, all such
messages are automatically added to the conversation. Messages
can also be composed in a full screen message editor, as is shown
in Figure 5.

5.3 Reconstructing conversations
There are many ways users may choose to initiate communication
with their colleagues. A user may know a priori that the message
he or she is about to send will bring about an extended conversa-
tion. In this case the user can create the conversation explicitly by
selecting “Start discussion” from the “Communicate/work with
others” menu, akin to creating a private newsgroup or IRC chan-
nel. The discussion that is created is peer-to-peer in that it is
maintained over instant messaging and e-mail protocols. News-
groups and IRC channels can be supported with the same conver-
sation user interface, highlighting the uniformity our system pro-
vides to communication.

However, in other situations, a user will send a quick informative
message without expecting the numerous replies that ensue. At
some point the resulting dialog may become important enough to
warrant separate treatment as a conversation as modeled by our
ontology. It is crucial that the user interface support a posteriori
changes to the way a user organizes his or her messages and
conversations.

When users are ready to start managing a stream of messages as a
conversation in the user interface, he or she can select View Dis-
cussion from the context menu of a message to instruct the system
to assemble all of the relevant messages into a conversation. Cur-
rently, the system uses the msg:inReplyTo relationships that
exist between messages to locate the connected subgraph of the
entire message corpus to identify the conversation.

In other cases, users may wish to collect messages that are loosely
related into a conversation but that do not form a subgraph as
defined above. Haystack allows users to drag and drop messages
into the view of a conversation to indicate that the messages are a
part of the conversation. Users can also add messages to conversa-
tions by treating the conversation as a category; the use of catego-
ries in Haystack will be discussed later.

5.4 Abstraction of identity
Our ontology gives users the ability to manage their contacts us-
ing a single identity, instead of the separate identities that are
assigned on a per-protocol basis. As a result, it is natural to allow
users to set up communication with their contacts regardless of
protocol. Haystack exposes commands that allow the user to
query for all messages to or from any contact from the contact’s
context menu. Similarly, users can start conversations with or
send messages to others through the same context menu. Refer to
Figure 7 for a depiction of such a context menu.

5.5 Organizing messages
Given a system in which messages can be managed uniformly
regardless of protocol or system, we are able to provide features to
users that can help them to keep their various communications
organized and that work over all types of messages. As Whittaker
points out, e-mail (and similarly, other messaging systems) sub-
jects the user to information overload, resulting in important mes-
sages not being attended to [5]. This drawback is primarily due to
a combination of the high rate of information arrival, users lack-
ing time or being unwilling to file away items and a lack of fea-
tures that mitigate the effects of overload such as flexible message
status tracking capabilities, reminder scheduling, semantic cluster-
ing of loosely related items and more powerful IR support.

The Categories pane in Haystack allows users to easily associate
objects with one or more categories by presenting a list of check-
boxes (see Figure 6). A check indicates that the currently viewed
message belongs in the corresponding category. Haystack comes
with a default list of categories, but this list can be easily custom-
ized by the user. In addition to being able to attach messages to
conversations, users are also able to create categories such as
“Letters from Friends” or “Favors” under which messages can be
filed in order to help them locate important messages later. The
use of checkboxes is suggestive of the system’s ability to allow
items to be filed under multiple categories simultaneously. Previ-
ous work has suggested that such filing systems, which do not
force users to choose among potentially overlapping categories,
may be beneficial to users [15]. The system also provides default
categories that typically apply to messages, e.g., “high impor-
tance”, “FYI”, etc.

Furthermore, as users classify messages that arrive into the sys-
tem, they are providing implicit descriptions for their categories
by the presence of the messages that these categories contain.
Haystack supports an extensive agent infrastructure that allows its
RDF repository to be used as a blackboard, creating the opportu-
nity for agents to apply classification and clustering algorithms to
“learn” why certain messages are filed into specific categories [2].
In the future, support is planned that will allow Haystack to sug-

Figure 5: Full screen message editor

gest categories for messages that it believes best characterize the
message, based on the results of these learning algorithms.

6. FUTURE WORK
Our prototype built on Haystack represents an evolutionary step in
terms of providing a single, unified interface for supporting inter-
personal and group communication. However, much work re-
mains to be done in order to produce an intuitive system that can
be employed by users on a daily basis. Although we have asserted
a unified messaging model to be useful, user studies are required
to understand whether users prefer a unified user interface or
would rather keep the distinction present in current messaging
paradigms. Similarly, support exists for hosting threaded discus-
sions around annotated documents, but further exploration into
the connections between messaging and group annotation is war-
ranted.

In terms of the implementation, our initial prototype includes
support for POP3, SMTP, Jabber instant messaging, and a light-
weight peer-to-peer messaging protocol built on top of JXTA.
Although we have demonstrated that the ontology can support a
myriad of different messaging protocols, we wish to demonstrate
this by incorporating support for the other messaging systems
discussed in this paper, e.g., NNTP, IRC.

Finally, we hope to further exploit RDF’s capability to encode
arbitrary metadata in order to realize other benefits of the Seman-
tic Web. By employing richer forms of categorization and seman-
tic markup in order to better describe the nature of messages being
sent, recipients will be able to better manage their information
influx. For example, if a piece of information being sent has al-
ready been characterized on the sender’s end, the recipients’ sys-
tems may be able to automatically file the information into the
proper categories or process requests embedded within the infor-

mation, such as meeting invitations. Also, it is not inconceivable
to imagine the user’s system serving as a “gatekeeper” for the
user, managing a user’s inbox by prioritizing received information
for the user’s consumption.

7. ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration, the MIT
Oxygen project, and IBM.

8. REFERENCES
[1] Huynh, D., Karger, D., and Quan, D. (2002). “Haystack: A

Platform for Creating, Organizing and Visualizing In-
formation Using RDF.” Semantic Web Workshop, The Elev-
enth World Wide Web Conference 2002 (WWW2002).
http://haystack.lcs.mit.edu/papers/sww02.pdf.

[2] Quan, D., Huynh, D., and Karger, D. “Haystack: A Platform
for Creating, Manipulating and Visualizing Information on
the Semantic Web.” In submission for the World Wide Web
Conference 2003 (WWW2003).

Figure 7: Context menu for a person

Figure 6: Categorization pane

[3] Resource Description Framework (RDF) Model and Syntax
Specification. http://www.w3.org/TR/1999/REC-rdf-syntax-
19990222/.

[4] Berners-Lee, T., Hendler, J., and Lassila, O. “The Semantic
Web.” Scientific American, May 2001.

[5] Whittaker, S. and Sidner, C. “E-mail Overload: Exploring
Personal Information Management of E-mail.” Proceedings
of CHI 96: Human Factors in Computing Systems.

[6] Smith, M., Cadiz, J., and Burkhalter, B. “Conversation Trees
and Threaded Chats.” CSCW ‘00.

[7] Nardi, B., Whittaker, S., and Bradner, E. “ Interaction and
Outeraction: Instant Messaging in Action.” CSCW ‘00.

[8] Whittaker, S., Terveen, L., Hill, W., and Cherny, L. “The
Dynamics of Mass Interaction.” CSCW 98.

[9] Voida, A., Nestetter, W., and Mynatt, E. “When Conversa-
tions Collide: The Tensions of Instant Messaging Attrib-
uted.” CHI 2002.

[10] Berners-Lee, T. Primer: Getting into RDF & Semantic Web
using N3. http://www.w3.org/2000/10/swap/Primer.html.

[11] Whittaker, S. “Talking to Strangers: An evaluation of the
Factors Affecting Electronic Collaboration.” CSCW 1996.

[12] Cadiz, J., Gupta, A., and Grudin, J. “Using Web Annotations
for Asynchronous Collaboration Around Documents.”
CSCW 2000.

[13] Kahan, J. and Koivunen, M. “Annotea: An Open RDF Infra-
structure for Shared Web Annotations.” WWW10, 2001.

[14] Quan, D., Lin, J., Katz, B., and Karger, D. “Sticky Notes for
the Semantic Web.” IUI 2003.

[15] Lansdale, M. “The Psychology of Personal Information
Management.” Applied Ergonomics, vol. 19, no. 1,
1988, pages 55–66.

[16] Box, D., Ehnebuske, D., Kavivaya, G., et al. SOAP: Simple
Object Access Protocol.
http://msdn.microsoft.com/library/en-
us/dnsoapsp/html/soapspec.asp.

