
User Interaction Experience for Semantic Web Information
David F. Huynh, Dennis Quan, David R. Karger

MIT AI Laboratory/LCS, 200 Technology Square, Cambridge, MA 02139 USA
{dfhuynh,dquan,karger}@ai.mit.edu

ABSTRACT
The Semantic Web project [2] aims to add semantics to the existing
World Wide Web. We propose an extension of the Web’s user in-
teraction experience to take advantage of the added semantics. This
user experience maintains the Web’s original navigation paradigm,
although all URIs, not just URLs, can be used to address informa-
tion objects. URIs form the superset of URLs and can name re-
sources other than just those with retrievable contents. Information
is displayed in webpage-like presentations in which each UI element
is associated with the information object that the element represents.
UI elements serve as proxies through which the user can manipulate
information objects. Uniform support for direct manipulation com-
plements the Web’s navigation paradigm to create an information-
centric environment for interacting with information. In addition, we
advocate the use of small cooperative tools over large standalone
applications to further promote this information-centric paradigm.

Categories and Subject Descriptors
H.5.2 [Information Interfaces and Presentation]: User Inter-
faces – graphical user interface, interaction styles.

General Terms
Design, Human Factors.

Keywords
Direct manipulation, information management, metadata, object
oriented, RDF, Semantic Web, user experience.

1. INTRODUCTION
The wide acceptance of the World Wide Web arguably owes much
to the simplicity of its user interaction experience. A lot of informa-
tion can be retrieved through mnemonic URLs or labeled links.
Using the Web involves mainly hopping between webpages through
hyperlinks. Now, the Semantic Web project [2] seeks to improve
that experience through more automation by adding semantics to the
information on the Web. As this effort gains traction, we ask how
this Web user interaction experience can be adapted to take advan-
tage of the added semantics.

Several tools have been built for visualizing and editing Semantic
Web data and schemas: Ontology editors such as Protégé [3] and
Ont-o-mat [4] allow ontology modeling experts to enter information
according to specific ontologies with a high degree of precision.
Graph-based viewers show detailed interconnections within seman-
tic networks. Finally, schema-specific user interfaces are customized
for managing data in specific domains. While ontology editors and
graph-based viewers are too generic to be convenient, schema-
specific user interfaces are too specific to generalize and scale. We
find these tools lacking to serve as the successor of the web browser.

In this paper, we propose an extension to the Web’s user interaction
experience that takes advantage of the semantics added by the Se-
mantic Web project. The next three sections discuss this extension
and illustrate the interaction experience through an implementation
on our Haystack information management platform [5].

2. URI-BASED NAVIGATION
Our user interaction experience adopts the already familiar Web
navigation paradigm for browsing through Semantic Web informa-
tion. While Web contents can be addressed by URLs, Semantic Web
contents can be addressed by URIs.

URIs are used by the Resource Description Framework (RDF) [1], a
core Semantic Web technology, to name information objects inde-
pendent of their physical storage location and binary representa-
tions. By imposing a unified naming scheme, RDF allows several
unrelated schemas to be applied to a common object through its
URI, and consequently opens doors for prolific sharing of data
among different software applications. One application can refer to
an object whose storage is managed by another application through
the object’s URI. Alternatively, several applications can manage
different aspects of a single common object: address book software
can manage the contact information of the same person whose fi-
nancial statements are managed by financial software. It is this ca-
pability and others of RDF that make it suitable for modeling much
of the user’s information [5]. In Haystack, URIs can identify objects
ranging from text documents to contact objects to audio sound-
tracks.

Figure 1 illustrates Haystack’s resemblance to the Web browser:
note the usual Back, Forward, Refresh, and Home buttons on the
toolbar. Below the toolbar are the title pane and the content area.
When a URI is entered into the Go address box, the content area
displays a page of information about the object named by that URI.
If the URI is a valid URL, the web page addressed by that URL is
shown. Otherwise, Haystack puts together a page of information
relevant to the URI. This process resembles the generation of dy-
namic web pages from data in server-side databases. In Haystack,
the data can come from various places including the local machine
or remote information sources.

3. SEMANTICALLY-AUGMENTED
WEBPAGES
Although the pages of information put together by Haystack resem-
ble web pages, they are actually augmented with the semantics of
the information from which they have been constructed. They con-
tain more than text and links: every UI element (e.g. text span, im-
age) in them is bound to some underlying information object that it
represents. The UI element can serve as a proxy through which the
user can manipulate the underlying object. Manipulations take the
form of drag and drop and invocation of context menus listing ap-
plicable operations. Figure 1 shows the context menu resulting from
right clicking some piece of text representing a music album.

Copyright is held by the author/owner(s).
WWW 2003, May 20-24, 2003, Budapest, Hungary.
ACM xxx.

Figure 1. Haystack screenshot

The binding of UI elements to
information objects is
implemented using the concept
of view. A view is a way of
presenting objects with certain
characteristics. Given an object
to present, Haystack examines
its characteristics and the
context in which it is to be
shown and finds the appropriate
view to present it. Each object
may have more than one
suitable view—each view is
appropriate for certain contexts:
a summary view is suitable in
limited screen space, a full view
is appropriate when all relevant
details are needed, etc.

A view of one object may
include the views of other
relevant objects. In Figure 1, the
view of the media piece named
“My Heart Will Go On”
includes views for the album
“Titanic”, the artist “Celine
Dion”, etc. The entire Haystack
UI is constructed by nesting
views within one another. Each view remembers which underlying
information object it is presenting.

When the user initiates a UI action (e.g. right click, drag), Haystack
can systematically enumerate all views that enclose the screen loca-
tion of the action and trace back to their associated information
objects: the user wants to interact with one of these objects. Figure 1
shows Haystack suggesting four different objects upon the user
right-clicking on the text “Titanic”. The best candidate, the album, is
listed first while the most unlikely candidate, the media piece, is
listed last.

Uniform support for direct manipulation (e.g. context menus, drag
and drop) complements the URI-based navigation paradigm to cre-
ate an information-centric environment for interaction with informa-
tion. Information can be called upon by URIs or links, and they can
be operated on in place. There is no need to explicitly open an ap-
plication in order to perform an operation. Rather, operations are
invoked directly on each object through its context menu; invoca-
tion of an operation could lead to a custom UI through which the
operation can be completed.

4. SMALL, COOPERATIVE TOOLS
To promote information-centric interactions, we recommend against
monolithic standalone applications with prepackaged sets of fea-
tures. Instead, we advocate the use of small tools that can be used
together easily to accomplish complex tasks. Each tool should be
designed to work on all information having characteristics with
which the tool is applicable. With proper wiring, context menus can
automatically list tools (or operations) applicable to right-clicked
objects. For instance, Figure 1 shows the “Play Album” operation
for the album object.

Certain tools are generic and can work on all types of information.
For instance, using Haystack’ s “Organize” tool shown on the right

hand side of Figure 1, any object can be classified into zero or more
categories. In contrast, most of today’ s applications that allow or-
ganization provide their own implementations of folder hierarchies.
These various implementations are slightly different, forcing the
user to adapt to them. In addition, information from various applica-
tions cannot be organized together in a common, unified hierarchy.
Haystack breaks down barriers between applications to allow infor-
mation to be managed together in more sensible ways.

5. ACKNOWLEDGMENTS
This work was supported by the MIT-NTT collaboration, the MIT Oxygen
project, and IBM.

6. REFERENCES
[1] Resource Description Framework (RDF) Model and Syntax Specifi-

cation. http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/.
[2] Berners-Lee, T., Hendler, J., and Lassila, O. “ The Semantic Web.”

Scientific American, May 2001.
[3] Eriksson, H., Fergerson, R., Shahar, Y., and Musen, M. Automatic

Generation of Ontology Editors. In Proceedings of the 12th Banff
Knowledge Acquisition Workshop, Banff, Alberta, Canada, 1999.

[4] Handschuh, S., Staab, S., and Maedche, A. CREAM—Creating
relational metadata with a component-based ontology-driven annota-
tion framework. K-CAP ’ 01.

[5] Huynh, D., Karger, D., and Quan, D. (2002). “ Haystack: A Platform
for Creating, Organizing and Visualizing In-formation Using RDF.”
Semantic Web Workshop, The Eleventh World Wide Web Confer-
ence 2002 (WWW2002).
http://haystack.lcs.mit.edu/papers/sww02.pdf.

